46 research outputs found

    Charging and Growth of Fractal Dust Grains

    Full text link
    The structure and evolution of aggregate grains formed within a plasma environment are dependent upon the charge acquired by the micron-sized dust grains during the coagulation process. The manner in which the charge is arranged on developing irregular structures can affect the fractal dimension of aggregates formed during collisions, which in turn influences the coagulation rate and size evolution of the dust within the plasma cloud. This paper presents preliminary models for the charge and size evolution of fractal aggregates immersed in a plasma environment calculated using a modification to the orbital-motion-limited (OML) theory. Primary electron and ion currents incident on points on the aggregate surface are determined using a line-of-sight (LOS) approximation: only those electron or ion trajectories which are not blocked by another grain within the aggregate contribute to the charging current. Using a self-consistent iterative approach, the equilibrium charge and dipole moment are calculated for the dust aggregate. The charges are then used to develop a heuristic charging scheme which can be implemented in coagulation models. While most coagulation theories assume that it is difficult for like-charged grains to coagulate, the OML_LOS approximation indicates that the electric potentials of aggregate structures are often reduced enough to allow significant coagulation to occur

    Helical Structures in Vertically Aligned Dust Particle Chains in a Complex Plasma

    Full text link
    Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a RF GEC cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindle-like structure and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, (where are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle and the RF power. For clusters having fixed numbers of particles, the RF power at which structural transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural transitions as well as the basic symmetry exhibited by the one-, two- and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [10]

    Cosmic Dust Aggregation with Stochastic Charging

    Full text link
    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly-shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) are affected most strongly

    Multipole Expansions of Aggregate Charge: How Far to Go?

    Full text link
    Aggregates immersed in a plasma or radiative environment will have charge distributed over their extended surface. Previous studies have modeled the aggregate charge using the monopole and dipole terms of a multipole expansion, with results indicating that the dipole-dipole interactions play an important role in increasing the aggregation rate and altering the morphology of the resultant aggregates. This study examines the effect that including the quadrupole terms has on the dynamics of aggregates interacting with each other and the confining electric fields in laboratory experiments. Results are compared to modeling aggregates as a collection of point charges located at the center of each spherical monomer comprising the aggregate.Comment: 6 page

    Formation of Cosmic Dust Bunnies

    Full text link
    Planetary formation is an efficient process now thought to take place on a relatively short astronomical time scale. Recent observations have shown that the dust surrounding a protostar emits more efficiently at longer wavelengths as the protoplanetary disk evolves, suggesting that the dust particles are coagulating into fluffy aggregates, "much as dust bunnies form under a bed." One poorly understood problem in this coagulation process is the manner in which micron-sized, charged grains form the fractal aggregate structures now thought to be the precursors of protoplanetary disk evolution. This study examines the characteristics of such fractal aggregates formed by the collision of spherical monomers and aggregates where the charge is distributed over the aggregate structure. The aggregates are free to rotate due to collisions and dipole-dipole electrostatic interactions. Comparisons are made for different precursor size distributions and like-charged, oppositelycharged, and neutral grains

    Modeling Agglomeration of Dust Particles in Plasma

    Full text link
    The charge on an aggregate immersed in a plasma environment distributes itself over the aggregate's surface; this can be approximated theoretically by assuming a multipole distribution. The dipole-dipole (or higher order) charge interactions between fractal aggregates lead to rotations of the grains as they interact. Other properties of the dust grains also influence the agglomeration process, such as the monomer shape (spherical or ellipsoidal) or the presence of magnetic material. Finally, the plasma and grain properties also determine the morphology of the resultant aggregates. Porous and fluffy aggregates are more strongly coupled to the gas, leading to reduced collisional velocities, and greater collisional cross sections. These factors in turn can determine the growth rate of the aggregates and evolution of the dust cloud. This paper gives an overview of the numerical and experimental methods used to study dust agglomeration at CASPER and highlights some recent results
    corecore