24,914 research outputs found

    Gauge drivers for the generalized harmonic Einstein equations

    Get PDF
    The generalized harmonic representation of Einstein's equations is manifestly hyperbolic for a large class of gauge conditions. Unfortunately most of the useful gauges developed over the past several decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for a much wider class of conditions, including as special cases many of the standard ones used in numerical relativity: e.g., K freezing, Gamma freezing, Bona-MassĂł slicing, conformal Gamma drivers, etc. Analytical and numerical results are presented which test the stability and the effectiveness of this new gauge-driver evolution system

    Extreme ultraviolet emission lines of Ni XII in laboratory and solar spectra

    Get PDF
    Wavelengths for emission lines arising from 3s23p5-3s3p6 and 3s23p5-3s23p43d transitions in Ni XII have been measured in extreme ultraviolet spectra of the Joint European Torus(JET) tokamak. The 3s23p5 2P1/2-3s23p4(3P)3d 2D3/2 line is found to lie at 152.90 ± 0.02 A, a significant improvement over the previous experimental determination of 152.95 ± 0.5 A. This new wavelength is in good agreement with a solar identification at 152.84 ± 0.06 A, confirming the presence of this line in the solar spectrum. The Ni XII feature at 152.15 A may be a result only of the 3s23p5 2P3/2-3s23p4(3P)3d 2D5/2 transition, rather than a blend of this line with 3s23p5 2P3/2-3s23p (3P)3d 2P1/2, as previously suggested. Unidentified emission lines at 295.32 and 317.61 A in solar flare spectra from the Skylab mission are tentatively identified as the 3s23p5 2P3/2-3s3p6 2S1/2 and 3s23p5 2P1/2-3s3p6 2S1/2 transitions in Ni XII, which have laboratory wavelengths of 295.33 and 317.50 A, respectively. Additional support for these identifications is provided by the line intensity ratio for the solar features, which shows good agreement between theory and observation

    Jet Collimation by Small-Scale Magnetic Fields

    Get PDF
    A popular model for jet collimation is associated with the presence of a large-scale and predominantly toroidal magnetic field originating from the central engine (a star, a black hole, or an accretion disk). Besides the problem of how such a large-scale magnetic field is generated, in this model the jet suffers from the fatal long-wave mode kink magnetohydrodynamic instability. In this paper we explore an alternative model: jet collimation by small-scale magnetic fields. These magnetic fields are assumed to be local, chaotic, tangled, but are dominated by toroidal components. Just as in the case of a large-scale toroidal magnetic field, we show that the ``hoop stress'' of the tangled toroidal magnetic fields exerts an inward force which confines and collimates the jet. The magnetic ``hoop stress'' is balanced either by the gas pressure of the jet, or by the centrifugal force if the jet is spinning. Since the length-scale of the magnetic field is small (< the cross-sectional radius of the jet << the length of the jet), in this model the jet does not suffer from the long-wave mode kink instability. Many other problems associated with the large-scale magnetic field are also eliminated or alleviated for small-scale magnetic fields. Though it remains an open question how to generate and maintain the required small-scale magnetic fields in a jet, the scenario of jet collimation by small-scale magnetic fields is favored by the current study on disk dynamo which indicates that small-scale magnetic fields are much easier to generate than large-scale magnetic fields.Comment: 14 pages, no figur

    Magnetic Fields in Star-Forming Molecular Clouds I. The First Polarimetry of OMC-3 in Orion A

    Get PDF
    The first polarimetric images of the OMC-3 region of the Orion A filamentary molecular cloud are presented. Using the JCMT, we have detected polarized thermal emission at 850 microns from dust along a 6' length of the dense filament. The polarization pattern is highly ordered and is aligned with the filament throughout most of the region. The plane-of-sky magnetic field direction is perpendicular to the measured polarization. The mean percentage polarization is 4.2% with a 1 sigma dispersion of 1%. This region is part of the integral-shaped filament, and active star formation is ongoing along its length. The protostellar outflow directions do not appear to be consistently correlated with the direction of the plane-of-sky field or the filament structure itself. Depolarization toward the filament center, previously detected in many other star-forming cores and protostars, is also evident in our data. (abstract abridged)Comment: 9 pages plus 2 figures (1 colour); accepted for publication in the March 10, 2000 issue (vol. 531 #2) of The Astrophysical Journa

    Orbits and origins of the young stars in the central parsec of the galaxy

    Get PDF
    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∌100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk

    Antibodies to acetylcholine receptor in parous women with myasthenia: evidence for immunization by fetal antigen

    Get PDF
    The weakness in myasthenia gravis (MG) is mediated by autoantibodies against adult muscle acetylcholine receptors (AChR) at the neuromuscular junction; most of these antibodies also bind to fetal AChR, which is present in the thymus. In rare cases, babies of mothers with MG, or even of asymptomatic mothers, develop a severe developmental condition, arthrogryposis multiplex congenita, caused by antibodies that inhibit the ion channel function of the fetal AChR while not affecting the adult AChR. Here we show that these fetal AChR inhibitory antibodies are significantly more common in females sampled after pregnancy than in those who present before pregnancy, suggesting that they may be induced by the fetus. Moreover, we were able to clone high-affinity combinatorial Fab antibodies from thymic cells of two mothers with MG who had babies with arthrogryposis multiplex congenita. These Fabs were highly specific for fetal AChR and did not bind the main immunogenic region that is common to fetal and adult AChR. The Fabs show strong biases to VH3 heavy chains and to a single Vk1 light chain in one mother. Nevertheless, they each show extensive intraclonal diversification from a highly mutated consensus sequence, consistent with antigen-driven selection in successive steps. Collectively, our results suggest that, in some cases of MG, initial immunization against fetal AChR is followed by diversification and expansion of B cells in the thymus; maternal autoimmunity will result if the immune response spreads to the main immunogenic region and other epitopes common to fetal and adult AChR
    • 

    corecore