55 research outputs found
Multi-year patterns in testosterone, cortisol and corticosterone in baleen from adult males of three whale species
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 6 (2018): coy049, doi:10.1093/conphys/coy049.Male baleen whales have long been suspected to have annual cycles in testosterone, but due to difficulty in collecting endocrine samples, little direct evidence exists to confirm this hypothesis. Potential influences of stress or adrenal stress hormones (cortisol, corticosterone) on male reproduction have also been difficult to study. Baleen has recently been shown to accumulate steroid hormones during growth, such that a single baleen plate contains a continuous, multi-year retrospective record of the whale’s endocrine history. As a preliminary investigation into potential testosterone cyclicity in male whales and influences of stress, we determined patterns in immunoreactive testosterone, two glucocorticoids (cortisol and corticosterone), and stable-isotope (SI) ratios, across the full length of baleen plates from a bowhead whale (Balaena mysticetus), a North Atlantic right whale (Eubalaena glacialis) and a blue whale (Balaenoptera musculus), all adult males. Baleen was subsampled at 2 cm (bowhead, right) or 1 cm (blue) intervals and hormones were extracted from baleen powder with methanol, followed by quantification of all three hormones using enzyme immunoassays validated for baleen extract of these species. Baleen of all three males contained regularly spaced peaks in testosterone content, with number and spacing of testosterone peaks corresponding well to SI data and to species-specific estimates of annual baleen growth rate. Cortisol and corticosterone exhibited some peaks that co-occurred with testosterone peaks, while other glucocorticoid peaks occurred independent of testosterone peaks. The right whale had unusually high glucocorticoids during a period with a known entanglement in fishing gear and a possible disease episode; in the subsequent year, testosterone was unusually low. Further study of baleen testosterone patterns in male whales could help clarify conservation- and management-related questions such as age of sexual maturity, location and season of breeding, and the potential effect of anthropogenic and natural stressors on male testosterone cycles.This work was supported by (1) the Arizona Board of Regents Technology Research Initiative Fund; (2) the Center for Bioengineering Innovation at Northern Arizona University; (3) the Greenland Institute of Natural Resources; (4) the Woods Hole Oceanographic Institution Ocean Life Institute and (5) Fisheries and Ocean Canada’s (DFO) Priorities and Partnership Strategic Initiatives Fund and Oceans Protection Plan
Quantitative fatty acid signature analysis reveals a high level of dietary specialization in killer whales across the North Atlantic
Quantifying the diet composition of apex marine predators such as killer whales (Orcinus orca) is critical to assessing their food web impacts. Yet, with few exceptions, the feeding ecology of these apex predators remains poorly understood. Here, we use our newly validated quantitative fatty acid signature analysis (QFASA) approach on nearly 200 killer whales and over 900 potential prey to model their diets across the 5000 km span of the North Atlantic. Diet estimates show that killer whales mainly consume other whales in the western North Atlantic (Canadian Arctic, Eastern Canada), seals in the mid-North Atlantic (Greenland), and fish in the eastern North Atlantic (Iceland, Faroe Islands, Norway). Nonetheless, diet estimates also varied widely among individuals within most regions. This level of inter-individual feeding variation should be considered for future ecological studies focusing on killer whales in the North Atlantic and other oceans. These estimates reveal remarkable population- and individual-level variation in the trophic ecology of these killer whales, which can help to assess how their predation impacts community and ecosystem dynamics in changing North Atlantic marine ecosystems. This new approach provides researchers with an invaluable tool to study the feeding ecology of oceanic top predators
Quantum Computing
Quantum mechanics---the theory describing the fundamental workings of
nature---is famously counterintuitive: it predicts that a particle can be in
two places at the same time, and that two remote particles can be inextricably
and instantaneously linked. These predictions have been the topic of intense
metaphysical debate ever since the theory's inception early last century.
However, supreme predictive power combined with direct experimental observation
of some of these unusual phenomena leave little doubt as to its fundamental
correctness. In fact, without quantum mechanics we could not explain the
workings of a laser, nor indeed how a fridge magnet operates. Over the last
several decades quantum information science has emerged to seek answers to the
question: can we gain some advantage by storing, transmitting and processing
information encoded in systems that exhibit these unique quantum properties?
Today it is understood that the answer is yes. Many research groups around the
world are working towards one of the most ambitious goals humankind has ever
embarked upon: a quantum computer that promises to exponentially improve
computational power for particular tasks. A number of physical systems,
spanning much of modern physics, are being developed for this task---ranging
from single particles of light to superconducting circuits---and it is not yet
clear which, if any, will ultimately prove successful. Here we describe the
latest developments for each of the leading approaches and explain what the
major challenges are for the future.Comment: 26 pages, 7 figures, 291 references. Early draft of Nature 464, 45-53
(4 March 2010). Published version is more up-to-date and has several
corrections, but is half the length with far fewer reference
Marine mammal hotspots across the circumpolar Arctic
Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas
Comparison of δ13C and δ15N of ecologically relevant amino acids among beluga whale tissues
Abstract Ecological applications of compound-specific stable isotope analysis (CSIA) of amino acids (AAs) include 1) tracking carbon pathways in food webs using essential AA (AAESS) δ13C values, and 2) estimating consumer trophic position (TP) by comparing relative differences of ‘trophic’ and ‘source’ AA δ15N values. Despite the significance of these applications, few studies have examined AA-specific SI patterns among tissues with different AA compositions and metabolism/turnover rates, which could cause differential drawdown of body AA pools and impart tissue-specific isotopic fractionation. To address this knowledge gap, especially in the absence of controlled diet studies examining this issue in captive marine mammals, we used a paired-sample design to compare δ13C and δ15N values of 11 AAs in commonly sampled tissues (skin, muscle, and dentine) from wild beluga whales (Delphinapterus leucas). δ13C of two AAs, glutamic acid/glutamine (Glx, a non-essential AA) and, notably, threonine (an essential AA), differed between skin and muscle. Furthermore, δ15N of three AAs (alanine, glycine, and proline) differed significantly among the three tissues, with glycine δ15N differences of approximately 10 ‰ among tissues supporting recent findings it is unsuitable as a source AA. Significant δ15N differences in AAs such as proline, a trophic AA used as an alternative to Glx in TP estimation, highlight tissue selection as a potential source of error in ecological applications of CSIA-AA. Amino acids that differed among tissues play key roles in metabolic pathways (e.g., ketogenic and gluconeogenic AAs), pointing to potential physiological applications of CSIA-AA in studies of free-ranging animals. These findings underscore the complexity of isotopic dynamics within tissues and emphasize the need for a nuanced approach when applying CSIA-AA in ecological research
Tooth microwear texture in odontocete whales: variation with tooth characteristics and implications for dietary analysis
Understanding the diets and trophic relationships of toothed whales is central to understanding their roles in marine ecosystems, and associated conservation issues. Yet this is problematic because direct observation of what free ranging marine mammals eat is difficult. Quantitative 3D textural analysis of tooth microwear (DMTA) offers a new way of investigating diet in odontocetes and other marine mammals, but the application of this approach requires that we first understand how non-dietary variables affect the texture of microwear in odontocetes. Here we present the first analysis of microwear texture in odontocetes (beluga, Delphinapterus leucas) testing null hypotheses that microwear texture does not vary with dental surface tissue type (dentine, cementum), and that microwear texture does not vary with tooth characteristics (location in jaw, degree of wear, wear facet slope and facet orientation). Our results reveal that these variables have a significant impact on microwear textures, and thus have the potential to mask variation in texture caused by dietary differences. This does not mean that microwear texture analysis cannot be used as a tool for dietary analysis in toothed whales, but any future studies should adopt sampling protocols that standardize non-dietary variables to mitigate their effects in DMTA analysis
A review of Canadian Arctic killer whale (Orcinus orca) ecology
The killer whale (Orcinus orca Linnaeus, 1758) is a widely distributed marine predator with a broad ecological niche at the species level with evidence of specialization and narrow ecological niches among populations. Their occurrence in Canadian Arctic waters is limited by sea ice and it has been suggested that climate warming, which has caused increases in the area of ice-free water and duration of the ice-free season, has led to an increased killer whale presence during the open-water period. In this review, we summarize our knowledge of Canadian Arctic killer whale demographics and ecology, synthesizing published and previously unpublished information in a single document. More specifically, we summarize our knowledge of killer whale population size and trends, distribution and seasonality (including results from recent satellite-tracking studies), feeding ecology, and threats, and identify research priorities in the Canadian Arctic. Despite increased research effort during the past decade, our demographic and ecological knowledge remains incomplete. An improved ecological understanding is necessary for effective management of killer whales and their prey, species of ecological, economic, and cultural importance to Canadian Inuit and to the marine ecosystem. This knowledge will allow us to better understand the ecological consequences of a changing Arctic climate.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
- …