191 research outputs found

    Zero Temperature Limit of Holographic Superconductors

    Full text link
    We consider holographic superconductors whose bulk description consists of gravity minimally coupled to a Maxwell field and charged scalar field with general potential. We give an analytic argument that there is no "hard gap": the real part of the conductivity at low frequency remains nonzero (although typically exponentially small) even at zero temperature. We also numerically construct the gravitational dual of the ground state of some holographic superconductors. Depending on the charge and dimension of the condensate, the infrared theory can have emergent conformal or just Poincare symmetry. In all cases studied, the area of the horizon of the dual black hole goes to zero in the extremal limit, consistent with a nondegenerate ground state.Comment: 27 pages, 8 figure

    IT Based Knowledge Sharing and Organizational Trust: The Development and Initial Test of a Comprehensive Model

    Get PDF
    Knowledge has been recognized as an important asset for organizations to gain competitive advantage. Increasingly capable Information and Communication Technologies (ICT) and Information Systems (IS) have been developed and employed by organizations to facilitate Knowledge Management (KM). Beside outcomes, organizations are concerned with how to motivate employees to share their knowledge in order to obtain valuable inputs (i.e. knowledge), facilitate KM processes and get the greatest benefits from the investments. This paper aims to: (1) develop a comprehensive research model for studying the behavior of using KM systems to share knowledge in a socio-technical context, and (2) study the effect of Organizational Trust (OT) within this KM context. Literature review and survey were conducted to provide supportive results

    Explaining IT-Based Knowledge Sharing Behavior with IS Continuance Model and Social Factors

    Get PDF
    Knowledge is an important asset in determining the success and survival of an organization in today’s competitive markets. It becomes so important that many advanced Information and Communication Technologies (ICT) and Information Systems (IS) have been developed and employed by organizations specifically for Knowledge Management (KM). However, KM is not just a technical issue. Human is one of the important elements in KM. Human and technology must cooperate well so that KM can be facilitated. Therefore, how to motivate employees to share their knowledge becomes one of the most important KM issues. This paper aims to: (1) extend IS continuance model to study the behavior of using KMS to share knowledge within an organization and (2) integrate social factors in the model to study their relative importance to the use of KMS to share knowledge. It studied the impacts of perceived usefulness, satisfaction, social factors and task interdependence on the behavior of using KMS to share knowledge within an organization. Literature review and survey were conducted to provide supportive results. In the data analysis, the four factors were found to be significantly related to the behavior being studied and explained a significant proportion of the variance

    Toward a Systematic Holographic QCD: A Braneless Approach

    Get PDF
    Recently a holographic model of hadrons motivated by AdS/CFT has been proposed to fit the low energy data of mesons. We point out that the infrared physics can be developed in a more systematic manner by exploiting backreaction of the nonperturbative condensates. We show that these condensates can naturally provide the IR cutoff corresponding to confinement, thus removing some of the ambiguities from the original formulation of the model. We also show how asymptotic freedom can be incorporated into the theory, and the substantial effect it has on the glueball spectrum and gluon condensate of the theory. A simple reinterpretation of the holographic scale results in a non-perturbative running for alpha_s which remains finite for all energies. We also find the leading effects of adding the higher condensate into the theory. The difficulties for such models to reproduce the proper Regge physics lead us to speculate about extensions of our model incorporating tachyon condensation.Comment: 27 pages, LaTe

    Biophysical Measurements of Cells, Microtubules, and DNA with an Atomic Force Microscope

    Get PDF
    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here we review several AFM platforms (Dimension 3000 by Digital Instruments, EasyScan2 by Nanosurf, ezAFM by Nanomagnetics, and TKAFM by Thorlabs) and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials and quantify biophysical parameters: 1) imaging cells to determine membrane tension, 2) imaging microtubules to determine their persistence length, 3) imaging the random walk of DNA molecules to determine their contour length, and 4) imaging stretched DNA molecules to measure the tensional force.Comment: 29 page preprint, 7 figures, 1 tabl

    The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase

    Get PDF
    AbstractBackground: The p38 mitogen-activated protein (MAP) kinase regulates signal transduction in response to environmental stress. Pyridinylimidazole compounds are specific inhibitors of p38 MAP kinase that block the production of the cytokines interleukin-1 β and tumor necrosis factor α, and they are effective in animal models of arthritis, bone resorption and endotoxin shock. These compounds have been useful probes for studying the physiological functions of the p38-mediated MAP kinase pathway.Results: We report the crystal structure of a novel pyridinylimidazole compound complexed with p38 MAP kinase, and we demonstrate that this compound binds to the same site on the kinase as does ATP. Mutagenesis showed that a single residue difference between p38 MAP kinase and other MAP kinases is sufficient to confer selectivity among pyridinylimidazole compounds.Conclusions: Our results reveal how pyridinylimidazole compounds are potent and selective inhibitors of p38 MAP kinase but not other MAP kinases. It should now be possible to design other specific inhibitors of activated p38 MAP kinase using the structure of the nonphosphorylated enzyme

    Deep Inelastic Scattering and Gauge/String Duality

    Get PDF
    We study deep inelastic scattering in gauge theories which have dual string descriptions. As a function of gNgN we find a transition. For small gNgN, the dominant operators in the OPE are the usual ones, of approximate twist two, corresponding to scattering from weakly interacting partons. For large gNgN, double-trace operators dominate, corresponding to scattering from entire hadrons (either the original `valence' hadron or part of a hadron cloud.) At large gNgN we calculate the structure functions. As a function of Bjorken xx there are three regimes: xx of order one, where the scattering produces only supergravity states; xx small, where excited strings are produced; and, xx exponentially small, where the excited strings are comparable in size to the AdS space. The last regime requires in principle a full string calculation in curved spacetime, but the effect of string growth can be simply obtained from the world-sheet renormalization group.Comment: 52 pages, 10 figure

    Extrusion limits of magnesium alloys

    Full text link
    Magnesium alloys are generally found to be slower to extrude than aluminum alloys; however, limited quantitative comparisons of the actual operating windows have been published. In this work, the extrusion limits are determined for a series of commercial magnesium alloys (M1, ZM21, AZ31, AZ61, and ZK60). These are compared with the limits established for aluminum alloy AA6063. The maximum extrusion speed of alloy M1 is shown to be similar to AA6063. Alloys ZM21, AZ31, ZK60, and AZ61 exhibit maximum extrusion speeds 44, 18, 4, and 3 pct, respectively, of the maximum measured for AA6063. For AZ31, the maximum extrusion speed is increased by 22 pct after homogenization and by 64 pct for repeat extrusions. The variation in the extrusion limits with changing alloy content is rationalized in terms of differences in the hot working flow stress and solidus temperature.<br /

    Deep-Sea Exploration of the US Gulf of Mexico with NOAA Ship Okeanos Explorer

    Get PDF
    Oceanography articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format as long as users cite the materials appropriately (e.g., authors, Oceanography, volume number, issue number, page number[s], figure number[s], and DOI for the article), provide a link to the Creative Commons license, and indicate the changes that were made to the original content

    A 26 million year gap in the central Arctic record at the greenhouse-icehouse transition: Looking for clues

    Get PDF
    The Cenozoic record of the Lomonosov Ridge (central Arctic Ocean) recovered during Integrated Ocean Drilling Program (IODP) Expedition 302 revealed an unexpected 26 Ma hiatus, separating middle Eocene (�44.4 Ma) from lower Miocene sediments (�18.2 Ma). To elucidate the nature of this unconformity, we performed a multiproxy palynological (dinoflagellate cysts, pollen, and spores), micropaleontological (siliceous microfossils), inorganic, and organic (Tetra Ether Index of lipids with 86 carbon atoms (TEX86) and Branched and Isoprenoid Tetraether (BIT)) geochemical analysis of the sediments from �5 m below to �7 m above the hiatus. Four main paleoenvironmental phases (A–D) are recognized in the sediments encompassing the unconformity, two below (A–B) and two above (C–D): (A) Below the hiatus, proxies show relatively warm temperatures, with Sea Surface Temperatures (TEX86-derived SSTs) of about 8�C and high fresh to brackish water influence. (B) Approaching the hiatus, proxies indicate a cooling trend (TEX86-derived SSTs of �5�C), increased freshwater influence, and progressive shoaling of the Lomonosov Ridge drilling site, located close to or at sea level. (C) The interval directly above the unconformity contains sparse reworked Cretaceous to Oligocene dinoflagellate cysts. Sediments were deposited in a relatively shallow, restricted marine environment. Proxies show the simultaneous influence of both fresh and marine waters, with alternating oxic and anoxic conditions. Pollen indicates a relatively cold climate. Intriguingly, TEX86-derived SSTs are unexpectedly high, �15–19�C. Such warm surface waters may be partially explained by the ingression of warmer North Atlantic waters after the opening of the Fram Strait during the early Miocene. (D) Sediments of the uppermost interval indicate a phase of extreme oxic conditions, and a well-ventilated environment, which occurred after the complete opening of the Fram Strait. Importantly, and in contrast with classical postrifting thermal subsidence models for passive margins, our data suggest that sediment erosion and/or nondeposition that generated the hiatus was likely due to a progressive shoaling of the Lomonosov Ridge. A shallow water setting both before and after the hiatus suggests that the Lomonosov Ridge remained at or near sea level for the duration of the gap in the sedimentary record. Interacting sea level changes and/or tectonic activity (possibly uplift) must be invoked as possible causes for such a long hiatus
    • …
    corecore