53 research outputs found

    The SAMI Galaxy Survey: gravitational potential and surface density drive stellar populations -- I. early-type galaxies

    Get PDF
    The well-established correlations between the mass of a galaxy and the properties of its stars are considered evidence for mass driving the evolution of the stellar population. However, for early-type galaxies (ETGs), we find that gig-i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ\Phi than with mass MM, whereas stellar population age correlates best with surface density Σ\Sigma. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the SAMI Galaxy Survey, compared to correlations with mass, the color--Φ\Phi, [Z/H]--Φ\Phi, and age--Σ\Sigma relations show both smaller scatter and less residual trend with galaxy size. For the star formation duration proxy [α\alpha/Fe], we find comparable results for trends with Φ\Phi and Σ\Sigma, with both being significantly stronger than the [α\alpha/Fe]-MM relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color--Φ\Phi diagram is a more precise tool for determining the developmental stage of the stellar population than the conventional color--mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α\alpha/Fe] relations with Σ\Sigma: (a) the age--Σ\Sigma and [α\alpha/Fe]--Σ\Sigma correlations arise as results of compactness driven quenching mechanisms; and/or (b) as fossil records of the ΣSFRΣgas\Sigma_{SFR}\propto\Sigma_{gas} relation in their disk-dominated progenitors.Comment: 9 pages, 4 figures, 1 table Accepted to Ap

    The SAMI Galaxy Survey: mass-kinematics scaling relations

    Get PDF
    We use data from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey to study the dynamical scaling relation between galaxy stellar mass MM_* and the general kinematic parameter SK=KVrot2+σ2S_K = \sqrt{K V_{rot}^2 + \sigma^2} that combines rotation velocity VrotV_{rot} and velocity dispersion σ\sigma. We show that the logMlogSK\log M_* - \log S_K relation: (1)~is linear above limits set by properties of the samples and observations; (2)~has slightly different slope when derived from stellar or gas kinematic measurements; (3)~applies to both early-type and late-type galaxies and has smaller scatter than either the Tully-Fisher relation (logMlogVrot\log M_* - \log V_{rot}) for late types or the Faber-Jackson relation (logMlogσ\log M_* - \log\sigma) for early types; and (4)~has scatter that is only weakly sensitive to the value of KK, with minimum scatter for KK in the range 0.4 and 0.7. We compare SKS_K to the aperture second moment (the `aperture velocity dispersion') measured from the integrated spectrum within a 3-arcsecond radius aperture (σ3\sigma_{3^{\prime\prime}}). We find that while SKS_{K} and σ3\sigma_{3^{\prime\prime}} are in general tightly correlated, the logMlogSK\log M_* - \log S_K relation has less scatter than the logMlogσ3\log M_* - \log \sigma_{3^{\prime\prime}} relation.Comment: 14 pages, 8 figures, Accepted 2019 May 22. Received 2019 May 18; in original form 2019 January

    The architecture of Abell 1386 and its relationship to the Sloan Great Wall

    Full text link
    We present new radial velocities from AAOmega on the Anglo-Australian Telescope for 307 galaxies (b_J < 19.5) in the region of the rich cluster Abell 1386. Consistent with other studies of galaxy clusters that constitute sub-units of superstructures, we find that the velocity distribution of A1386 is very broad (21,000--42,000 kms^-1, or z=0.08--0.14) and complex. The mean redshift of the cluster that Abell designated as number 1386 is found to be ~0.104. However, we find that it consists of various superpositions of line-of-sight components. We investigate the reality of each component by testing for substructure and searching for giant elliptical galaxies in each and show that A1386 is made up of at least four significant clusters or groups along the line of sight whose global parameters we detail. Peculiar velocities of brightest galaxies for each of the groups are computed and found to be different from previous works, largely due to the complexity of the sky area and the depth of analysis performed in the present work. We also analyse A1386 in the context of its parent superclusters: Leo A, and especially the Sloan Great Wall. Although the new clusters may be moving toward mass concentrations in the Sloan Great Wall or beyond, many are most likely not yet physically bound to it.Comment: 21 pages, 9 figures, includes the full appendix table. Accepted for publication in MNRA

    The SAMI pilot survey: The kinematic morphology-density relation in Abell 85, Abell 168 and Abell 2399

    Get PDF
    We examine the kinematic morphology of early-type galaxies (ETGs) in three galaxy clusters Abell 85, 168 and 2399. Using data from the Sydney-AAOMulti-object Integral field spectrograph we measure spatially resolved kinematics for 79 ETGs in these clusters. We calculate λR, a proxy for the projected specific stellar angular momentum, for each galaxy and classify the 79 ETGs in our samples as fast or slow rotators. We calculate the fraction of slow rotators in the ETG populations (fSR) of the clusters to be 0.21 ± 0.08, 0.08 ± 0.08 and 0.12 ± 0.06 for Abell 85, 168 and 2399, respectively, with an overall fraction of 0.15 ± 0.04. These numbers are broadly consistent with the values found in the literature, confirming recent work asserting that the fraction of slow rotators in the ETG population is constant across many orders of magnitude in global environment. We examine the distribution of kinematic classes in each cluster as a function of environment using the projected density of galaxies: the kinematic morphology-density relation.We find that in Abell 85 fSR increases in higher density regions but in Abell 168 and 2399 this trend is not seen. We examine the differences between the individual clusters to explain this. In addition, we find slow rotators on the outskirts of two of the clusters studied, Abell 85 and 2399. These galaxies reside in intermediate to low density regions and have clearly not formed at the centre of a cluster environment. We hypothesize that they formed at the centres of groups and are falling into the clusters for the first time

    The SAMI Pilot Survey: stellar kinematics of galaxies in Abell 85, 168 and 2399

    Get PDF
    We present the SAMI Pilot Survey, consisting of integral field spectroscopy of 106 galaxies across three galaxy clusters, Abell 85, Abell 168 and Abell 2399. The galaxies were selected by absolute magnitude to have Mr < -20.25 mag. The survey, using the Sydney-AAO Multi-object Integral field spectrograph (SAMI), comprises observations of galaxies of all morphological types with 75 per cent of the sample being early-type galaxies (ETGs) and 25 per cent being late-type galaxies (LTGs). Stellar velocity and velocity dispersion maps are derived for all 106 galaxies in the sample. The lambdaR parameter, a proxy for the specific stellar angular momentum, is calculated for each galaxy in the sample. We find a trend between lambdaR and galaxy concentration such that LTGs are less concentrated higher angular momentum systems, with the fast-rotating ETGs (FRs) more concentrated and lower in angular momentum. This suggests that some dynamical processes are involved in transforming LTGs to FRs, though a significant overlap between the lambdaR distributions of these classes of galaxies implies that this is just one piece of a more complicated picture. We measure the kinematic misalignment angle, Psi, for the ETGs in the sample, to probe the intrinsic shapes of the galaxies. We find the majority of FRs (83 per cent) to be aligned, consistent with them being oblate spheroids (i.e. discs). The slow rotating ETGs (SRs), on the other hand, are significantly more likely to show kinematic misalignment (only 38 per cent are aligned). This confirms previous results that SRs are likely to be mildly triaxial systems

    The SAMI Galaxy Survey: The link between angular momentum and optical morphology

    Get PDF
    We investigate the relationship between stellar and gas specific angular momentum j, stellar massM* and optical morphology for a sample of 488 galaxies extracted from the Sydney-AAO Multi-object Integral field Galaxy Survey.We find that j, measured within one effective radius, monotonically increases with M* and that, for M* > 109.5 M⊙, the scatter in this relation strongly correlates with optical morphology (i.e. visual classification and Sérsic index). These findings confirm that massive galaxies of all types lie on a plane relating mass, angular momentum and stellar-light distribution, and suggest that the large-scale morphology of a galaxy is regulated by its mass and dynamical state. We show that the significant scatter in the M*-j relation is accounted for by the fact that, at fixed stellar mass, the contribution of ordered motions to the dynamical support of galaxies varies by at least a factor of 3. Indeed, the stellar spin parameter (quantified via λR) correlates strongly with Sérsic and concentration indices. This correlation is particularly strong once slow rotators are removed from the sample, showing that late-type galaxies and early-type fast rotators form a continuous class of objects in terms of their kinematic properties

    The SAMI Galaxy Survey: Decomposed Stellar Kinematics of Galaxy Bulges and Disks

    Full text link
    We investigate the stellar kinematics of the bulge and disk components in 826 galaxies with a wide range of morphology from the Sydney-AAO Multi-object Integral-field spectroscopy (SAMI) Galaxy Survey. The spatially-resolved rotation velocity (V) and velocity dispersion (σ\sigma) of bulge and disk components have been simultaneously estimated using the penalized pixel fitting (pPXF) method with photometrically defined weights for the two components. We introduce a new subroutine of pPXF for dealing with degeneracy in the solutions. We show that the V and σ\sigma distributions in each galaxy can be reconstructed using the kinematics and weights of the bulge and disk components. The combination of two distinct components provides a consistent description of the major kinematic features of galaxies over a wide range of morphological types. We present Tully-Fisher and Faber-Jackson relations showing that the galaxy stellar mass scales with both V and σ\sigma for both components of all galaxy types. We find a tight Faber-Jackson relation even for the disk component. We show that the bulge and disk components are kinematically distinct: (1) the two components show scaling relations with similar slopes, but different intercepts; (2) the spin parameter λR\lambda_R indicates bulges are pressure-dominated systems and disks are supported by rotation; (3) the bulge and disk components have, respectively, low and high values in intrinsic ellipticity. Our findings suggest that the relative contributions of the two components explain, at least to first order, the complex kinematic behaviour of galaxies.Comment: 22 pages, 21 figures; Accepted for publication in MNRA
    corecore