105 research outputs found

    Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.

    Get PDF
    Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection

    Radiological Correlates of Raised Intracranial Pressure in Children: A Review.

    Get PDF
    Radiological assessment of the head is a routine part of the management of traumatic brain injury. This assessment can help to determine the requirement for invasive intracranial pressure (ICP) monitoring. The radiological correlates of elevated ICP have been widely studied in adults but far fewer specific pediatric studies have been conducted. There is, however, growing evidence that there are important differences in the radiological presentations of elevated ICP between children and adults; a reflection of the anatomical and physiological differences, as well as a difference in the pathophysiology of brain injury in children. Here in, we review the radiological parameters that correspond with increased ICP in children that have been described in the literature. We then describe the future directions of this work and our recommendations in order to develop non-invasive and radiological markers of raised ICP in children

    Thresholds for identifying pathological intracranial pressure in paediatric traumatic brain injury.

    Get PDF
    Intracranial pressure (ICP) monitoring forms an integral part of the management of severe traumatic brain injury (TBI) in children. The prediction of elevated ICP from imaging is important when deciding on whether to implement invasive ICP monitoring for a patient. However, the radiological markers of pathologically elevated ICP have not been specifically validated in paediatric studies. Here in, we describe an objective, non-invasive, quantitative method of stratifying which patients are likely to require invasive monitoring. A retrospective review of patients admitted to Cambridge University Hospital's Paediatric Intensive Care Unit between January 2009 and December 2016 with a TBI requiring invasive neurosurgical monitoring was performed. Radiological biomarkers of TBI (basal cistern volume, ventricular volume, volume of extra-axial haematomas) from CT scans were measured and correlated with epochs of continuous high frequency variables of pressure monitoring around the time of imaging. 38 patients were identified. Basal cistern volume was found to correlate significantly with opening ICP (r = -0.53, p < 0.001). The optimal threshold of basal cistern volume for predicting high ICP ([Formula: see text]20 mmHg) was a relative volume of 0.0055 (sensitivity 79%, specificity 80%). Ventricular volume and extra-axial haematoma volume did not correlate significantly with opening ICP. Our results show that the features of pathologically elevated ICP in children may differ considerably from those validated in adults. The development of quantitative parameters can help to predict which patients would most benefit from invasive neurosurgical monitoring and we present a novel radiological threshold for this.We gratefully acknowledge financial support as follows. Research support: the Medical Research Council (MRC, Grant Nos. G0600986 ID79068 and G1002277 ID98489) and the National Institute for Health Research Biomedical Research Centre (NIHR BRC) Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). Authors’ support: Peter J Hutchinson – NIHR Research Professorship, Academy of Medical Sciences/Health Foundation Senior Surgical Scientist Fellowship, NIHR Global Health Research Group on Neurotrauma, and NIHR Cambridge BRC. Joseph Donnelly is supported by a Woolf Fisher Scholarship. MC- NIHR BRC

    A restatement of the natural science evidence base concerning grassland management, grazing livestock and soil carbon storage

    Get PDF
    Approximately a third of all annual greenhouse gas emissions globally are directly or indirectly associated with the food system, and over a half of these are linked to livestock production. In temperate oceanic regions, such as the UK, most meat and dairy is produced in extensive systems based on pasture. There is much interest in the extent to which such grassland may be able to sequester and store more carbon to partially or completely mitigate other greenhouse gas emissions in the system. However, answering this question is difficult due to context-specificity and a complex and sometimes inconsistent evidence base. This paper describes a project that set out to summarize the natural science evidence base relevant to grassland management, grazing livestock and soil carbon storage potential in as policy-neutral terms as possible. It is based on expert appraisal of a systematically assembled evidence base, followed by a wide stakeholders engagement. A series of evidence statements (in the appendix of this paper) are listed and categorized according to the nature of the underlying information, and an annotated bibliography is provided in the electronic supplementary material.</p
    corecore