6 research outputs found
Minimization of End-to-End Delay for an Improved Dual-Sink Cluster-Based Routing in WBAN
Wireless Body Area Networks (WBANs) are an integral part of a Wireless sensor network, where sensor nodes are strategically placed in the human body to sense physiological signals and transmit them to the medical personnel via server for medical observations. Every sensor node in WBANs has a general limitation in energy efficiency, end-to-end delay, residual energy, etc. Also, the high energy consumption in WBANs is mainly due to the number of hops covered during physiological signal transmission. This work developed a hop-distance scenario to address these challenges and improve on what others have done. It buffered traffic estimation schemes to minimize end-to-end delay and the total network energy efficiency. This work minimizes end-to-end delay dual-sink cluster-based routing in WBANs by improving the existing dual-sink-sink cluster-based scheme (iDSCB). The simulation result shows that the Minimization of end-to-end delay of the improved dual-sink cluster-based (iDSCB) enhanced the performance of the current article DSCB in terms of end-to-end delay and residual energy by 3.15% and 8.88%, respectively
A Review on Critical Data Transmission in Wireless Body Area Networks
Wireless body area networks (WBANs) assemble multiple transceiver nodes in, on, or around a patient's body to transmit physiological signals to the sink node and further send it to the medical personnel via a medical server. WBANs a sensor network that is characterized as energy-dependent. Due to this finite nature, the deployment of intelligent utilization is needed. Quality of service (QoS) is another area that needs rapt attention to receive exactly what was sent from the source node to the destination node and throughput. Critical data transmission is characterized by abnormal data status that requires an urgent response from the medical personnel without delay to save the patient's life. In this review article, we propose a review of critical data transmission in wireless body area networks. However, most past articles in this line focus more on energy-efficient, security and privacy, quality of the links, throughput, network maximization, and so on. None of them looks into the direction of transmitting critical data directly to the sink node without multi-hopping of the physiological signals between intermediate nodes, which wastes the time of transmission to save patient life. This disparity between these scholars motivates us to fill the gap between them. This review article briefly discussed the state-of-the-art critical data transmission in WBANs alongside the WBANs architecture and implementation. Furthermore, a pragmatic approach to determining the threshold's degree of critical data index sensed during transmission was also considered
EFFECTS OF DIETARY SUPPLEMENTATION OF Persea americana (AVOCADO) POLYPHENOLIC PEEL EXTRACT ON ALLOXAN-INDUCED DIABETIC DYSLIPIDAEMIA AND OXIDATIVE STRESS IN MALE WISTAR RATS
The increment in the cost as well as side effects of synthetic drugs has drawn the attention to the
exploration of health-promoting attributes of plants in our diets. This present study sought to
evaluate the effects of dietary supplementation of avocado pear peel polyphenolic extract
complications resulting from alloxan-induced diabetes in rats. Diabetes was induced in the
experimental animals by a single intraperitoneal injection of 150 mg/kg body weight (b.w) alloxan.
Thirty (30) male diabetic rats (287.54 ± 6.02g) were randomly assigned into five groups (n = 6)
consisting diabetic control (DC), 50 mg/kg, 100 mg/kg, and 200 mg/kg avocado polyphenolic peel
extract, and metformin. A separate group of six non-diabetic rats served as negative control (NC).
Animals in NC, DC and metformin groups were fed normal rat pellets while 50 mg/kg, 100 mg/kg,
and 200 mg/kg avocado polyphenolic peel extract supplementation were fed normal diet
supplemented with 50, 100 and 200 mg/kg avocado polyphenolic peel extract respectively. Diet and
water were given ad libitum for a period of 21 days while monitoring body weight and blood glucose
weekly. Following the feeding experiment, a significant (p < 0.05) reduction in blood glucose, total
cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), and malondialdehyde
(MDA) concentrations were observed in diabetic rats fed avocado polyphenolic peel extractsupplemented diets compared to DC. Serum insulin concentration as well as the calculated
homoestatic model assessment (HOMA-β) score were significantly higher as opposed to reduced
homoestatic model assessment insulin resistance (HOMA-IR) score in rats fed avocado polyphenolic
peel extract-supplemented diets compared to DC. Serum antioxidant enzymes (catalase and
superoxide dismutase) activities and glutathione concentration were remarkably enhanced in rats fed
avocado polyphenolic peel extract-supplemented diets compared to DC. Based on the results
generated from this study, it could be concluded that dietary avocado polyphenolic peel extract-supplementation abrogates diabetic induced dyslipidaemia and oxidative stress in rats. The
isolation of the beneficial compound found in the polyphenolic extract of the peel, as well as its
application in pharmaceutical and food industries could be as well looked into further
Mitophagy and spermatogenesis: Role and mechanisms
The mitophagy process, a type of macroautophagy, is the targeted removal of mitochondria. It is a type of autophagy exclusive to mitochondria, as the process removes defective mitochondria one by one. Mitophagy serves as an additional level of quality control by using autophagy to remove superfluous mitochondria or mitochondria that are irreparably damaged. During spermatogenesis, mitophagy can influence cell homeostasis and participates in a variety of membrane trafficking activities. Crucially, it has been demonstrated that defective mitophagy can impede spermatogenesis. Despite an increasing amount of evidence suggesting that mitophagy and mitochondrial dynamics preserve the fundamental level of cellular homeostasis, little is known about their role in developmentally controlled metabolic transitions and differentiation. It has been observed that male infertility is a result of mitophagy's impact on sperm motility. Furthermore, certain proteins related to autophagy have been shown to be present in mammalian spermatozoa. The mitochondria are the only organelle in sperm that can produce reactive oxygen species and finally provide energy for sperm movement. Furthermore, studies have shown that inhibited autophagy-infected spermatozoa had reduced motility and increased amounts of phosphorylated PINK1, TOM20, caspase 3/7, and AMPK. Therefore, in terms of reproductive physiology, mitophagy is the removal of mitochondria derived from sperm and the following preservation of mitochondria that are exclusively maternal
Computer aided and experimental study of cinnamic acid analog for oxidative stress treatment: The therapeutic validations
Objectives: The purpose of this study was to investigate the therapeutic activity of the cinnamic acid derivative KAD-3 (ethyl 3-(4-methoxyphenyl) acrylate) on Fe2+-induced oxidative hepatic damage via experimental and computer aided studies. Methods: Oxidative hepatic damage was induced via incubation of tissue supernatant with 0.1 mM FeSO4 for 30 min at 37 °C ex vivo with different concentration of KAD-3. Molecular docking, ADMET profiling, and density functional theory were conducted on the candidate to filter the properties of the drug candidate for drug design. Key findings: GSH, CAT, and ENTPDase activities were reduced when hepatic damage was induced (p < 0.05). In contrast, a significant increase in MDA levels and an increase in ATPase activity were observed. When compared to control levels, KAD-3 treatment reduced these levels and activities (p < 0.05). KAD-3 demonstrated good bond formation (−5.8 kcal/mol, −5.6 kcal/mol), drug-likeness (no rule violation), and electronic properties (chemically reactive) as compared to the standard (quercetin). Molecular docking, ADMET profiling, and density functional theory predict the functional attributes of the drug candidate against ATPase and ENTPDase targets. Conclusion: The findings from our study indicated that KAD-3 can protect against Fe2+-induced hepatic damage by suppressing oxidative stress and purinergic activities
DataSheet1_GC-MS chemical profiling, antioxidant, anti-diabetic, and anti-inflammatory activities of ethyl acetate fraction of Spilanthes filicaulis (Schumach. and Thonn.) C.D. Adams leaves: experimental and computational studies.docx
Introduction: This study aimed to investigate the chemical profile of GC-MS, antioxidant, anti-diabetic, and anti-inflammatory activities of the ethyl acetate fraction of Spilanthes filicaulis leaves (EFSFL) via experimental and computational studies.Methods: After inducing oxidative damage with FeSO4, we treated the tissues with different concentrations of EFSFL. An in-vitro analysis of EFSFL was carried out to determine its potential for antioxidant, anti-diabetic, and anti-inflammatory activities. We also measured the levels of CAT, SOD, GSH, and MDA.Results and discussion: EFSFL exhibited anti-inflammatory properties through membrane stabilizing properties (IC50 = 572.79 μg/ml), proteinase inhibition (IC50 = 319.90 μg/ml), and inhibition of protein denaturation (IC50 = 409.88 μg/ml). Furthermore, EFSFL inhibited α-amylase (IC50 = 169.77 μg/ml), α-glucosidase (IC50 = 293.12 μg/ml) and DPP-IV (IC50 = 380.94 μg/ml) activities, respectively. Our results indicated that induction of tissue damage reduced the levels of GSH, SOD, and CAT activities, and increased MDA levels. However, EFSFL treatment restores these levels to near normal. GC-MS profiling shows that EFSFL contains 13 compounds, with piperine being the most abundant. In silico interaction of the phytoconstituents using molecular and ensembled-based docking revealed strong binding tendencies of two hit compounds to DPP IV (alpha-caryophyllene and piperine with a binding affinity of −7.8 and −7.8 Kcal/mol), α-glucosidase (alpha-caryophyllene and piperine with a binding affinity of −9.6 and −8.9 Kcal/mol), and to α-amylase (piperine and Benzocycloheptano[2,3,4-I,j]isoquinoline, 4,5,6,6a-tetrahydro-1,9-dihydroxy-2,10-dimethoxy-5-methyl with a binding affinity of −7.8 and −7.9 Kcal/mol), respectively. These compounds also presented druggable properties with favorable ADMET. Conclusively, the antioxidant, antidiabetic, and anti-inflammatory activities of EFSFL could be due to the presence of secondary metabolites.</p