120 research outputs found

    Characterizing the Effects of Vaccine Adjuvants on Skeletal Muscle Myotubes and Macrophages

    Get PDF
    Vaccines train the immune system to recognize and defend against pathogens. Currently, six types of vaccines are in use and include live-attenuated, inactivated, viral vector, protein subunit, toxoid, and messenger RNA (mRNA), the latter of which was recently approved for humans during the COVID-19 pandemic. To increase the longevity and magnitude of immune responses, some vaccines are combined with adjuvants. Mouse models have shown that adjuvants in combination with antigens can elicit a pro-inflammatory immune system response that is required for proper development of protective immunity. There has been recent appreciation for the immunomodulatory functions of skeletal muscle, yet their contribution to the immunology of vaccination remains incompletely understood. Considering most vaccines are administered intramuscularly, we utilized C2C12 mouse myotubes and J774 macrophages to explore the cytokine response that skeletal muscle cells and macrophages evoke in response to several types of vaccine adjuvants in absence of the antigen. C2C12 myotubes and J774 macrophages were treated with 7 commonly used adjuvants or appropriate controls and collected at 6 hours and 24 hours. Cytokine secretion, cytotoxicity, and effects on myotube diameter were analyzed. Most adjuvants, except for the positive controls (LPS and PAM3CSK4), CpG 1826, and Quil-A, did not induce a pro-inflammatory response in C2C12 myotubes or J774 macrophages. Interestingly, LPS, PAM3CSK4, MF59, Quil-A, AS03, and CFA, led to increases in C2C12 myotube diameter indicating an activation of hypertrophy. The lack of pro-inflammatory effects indicates that most adjuvants need antigens or additional cell-cell interactions at the injection site to produce a pro-inflammatory cytokine response

    Acrolein exposure suppresses antigen-induced pulmonary inflammation

    Get PDF
    Background: Adverse health effects of tobacco smoke arise partly from its influence on innate and adaptive immune responses, leading to impaired innate immunity and host defense. The impact of smoking on allergic asthma remains unclear, with various reports demonstrating that cigarette smoke enhances asthma development but can also suppress allergic airway inflammation. Based on our previous findings that immunosuppressive effects of smoking may be largely attributed to one of its main reactive electrophiles, acrolein, we explored the impact of acrolein exposure in a mouse model of ovalbumin (OVA)-induced allergic asthma. Methods: C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection with the adjuvant aluminum hydroxide on days 0 and 7, and challenged with aerosolized OVA on days 14–16. In some cases, mice were also exposed to 5 ppm acrolein vapor for 6 hrs/day on days 14–17. Lung tissues or brochoalveolar lavage fluids (BALF) were collected either 6 hrs after a single initial OVA challenge and/or acrolein exposure on day 14 or 48 hrs after the last OVA challenge, on day 18. Inflammatory cells and Th1/Th2 cytokine levels were measured in BALF, and lung tissue samples were collected for analysis of mucus and Th1/Th2 cytokine expression, determination of protein alkylation, cellular thiol status and transcription factor activity. Results: Exposure to acrolein following OVA challenge of OVA-sensitized mice resulted in markedly attenuated allergic airway inflammation, demonstrated by decreased inflammatory cell infiltrates, mucus hyperplasia and Th2 cytokines. Acrolein exposure rapidly depleted lung tissue glutathione (GSH) levels, and induced activation of the Nrf2 pathway, indicated by accumulation of Nrf2, increased alkylation of Keap1, and induction of Nrf2-target genes such as HO-1. Additionally, analysis of inflammatory signaling pathways showed suppressed activation of NF-κB and marginally reduced activation of JNK in acrolein-exposed lungs, associated with increased carbonylation of RelA and JNK. Conclusion: Acrolein inhalation suppresses Th2-driven allergic inflammation in sensitized animals, due to direct protein alkylation resulting in activation of Nrf2 and anti-inflammatory gene expression, and inhibition of NF-κB or JNK signaling. Our findings help explain the paradoxical anti-inflammatory effects of cigarette smoke exposure in allergic airways disease

    Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    Get PDF
    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    Obesity exacerbates influenza-induced respiratory disease via the arachidonic acid-p38 MAPK pathway

    Get PDF
    Obesity is a risk factor for severe influenza, and asthma exacerbations caused by respiratory viral infections. We investigated mechanisms that increase the severity of airway disease related to influenza in obesity using cells derived from obese and lean individuals, and in vitro and in vivo models. Primary human nasal epithelial cells (pHNECs) derived from obese compared with lean individuals developed increased inflammation and injury in response to influenza A virus (IAV). Obese mice infected with influenza developed increased airway inflammation, lung injury and elastance, but had a decreased interferon response, compared with lean mice. Lung arachidonic acid (AA) levels increased in obese mice infected with IAV; arachidonic acid increased inflammatory cytokines and injury markers in response to IAV in human bronchial epithelial (HBE) cells. Obesity in mice, and AA in HBE cells, increased activation of p38 MAPK signaling following IAV infection; inhibiting this pathway attenuated inflammation, injury and tissue elastance responses, and improved survival. In summary, obesity increases disease severity in response to influenza infection through activation of the p38 MAPK pathway in response to altered arachidonic acid signaling

    Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2

    Get PDF
    Background: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2. Methods: We used house dust mite (HDM) or interleukin-1β in C57BL6/NJ WT or mice that lack GSTP. Airway basal cells were stimulated with interleukin-1β and the selective GSTP inhibitor, TLK199. GSTP and PKM2 were evaluated in sputum samples of asthmatics and healthy controls and incorporated analysis of the U-BIOPRED severe asthma cohort database. Results: Ablation of Gstp decreased total S-glutathionylation and attenuated HDM-induced allergic airways disease and interleukin-1β-mediated inflammation. Gstp deletion or inhibition by TLK199 decreased the interleukin-1β-stimulated secretion of pro-inflammatory mediators and lactate by epithelial cells. 13C-glucose metabolomics showed decreased glycolysis flux at the pyruvate kinase step in response to TLK199. GSTP and PKM2 levels were increased in BAL of HDM-exposed mice as well as in sputum of asthmatics compared to controls. Sputum proteomics and transcriptomics revealed strong correlations between GSTP, PKM2, and the glycolysis pathway in asthma. Conclusions: GSTP contributes to the pathogenesis of allergic airways disease in association with enhanced glycolysis and oxidative disruption of PKM2. Our findings also suggest a PKM2-GSTP-glycolysis signature in asthma that is associated with severe disease

    Serum amyloid A3 is required for normal weight and immunometabolic function in mice.

    No full text
    Serum amyloid A (SAA) is an apolipoprotein that is robustly upregulated in numerous inflammatory diseases and has been implicated as a candidate pro-inflammatory mediator. However, studies comparing endogenous SAAs and recombinant forms of the acute phase protein have generated conflicting data on the function of SAA in immunity. We generated SAA3 knockout mice to evaluate the contribution of SAA3 to immune-mediated disease, and found that mice lacking SAA3 develop adult-onset obesity and metabolic dysfunction along with defects in innate immune development. Mice that lack SAA3 gain more weight, exhibit increased visceral adipose deposition, and develop hepatic steatosis compared to wild-type littermates. Leukocytes from the adipose tissue of SAA3-/- mice express a pro-inflammatory phenotype, and bone marrow derived dendritic cells from mice lacking SAA3 secrete increased levels of IL-1β, IL-6, IL-23, and TNFα in response to LPS compared to cells from wild-type mice. Finally, BMDC lacking SAA3 demonstrate an impaired endotoxin tolerance response and inhibited responses to retinoic acid. Our findings indicate that endogenous SAA3 modulates metabolic and immune homeostasis

    A Common Pathway to Obesity and Allergic Asthma

    No full text
    • …
    corecore