5 research outputs found

    Optimization and experimental verification of coplanar interdigital electroadhesives

    Get PDF
    A simplified and novel theoretical model for coplanar interdigital electroadhesives has been presented in this paper. The model has been verified based on a mechatronic and reconfigurable testing platform, and a repeatable testing procedure. The theoretical results have shown that, for interdigital electroadhesive pads to achieve the maximum electroadhesive forces on non-conductive substrates, there is an optimum electrode width/space between electrodes (width/space) ratio, approximately 1.8. On conductive substrates, however, the width/space ratio should be as large as possible. The 2D electrostatic simulation results have shown that, the optimum ratio is significantly affected by the existence of the air gap and substrate thickness variation. A novel analysis of the force between the electroadhesive pad and the substrate has highlighted the inappropriateness to derive the normal forces by the division of the measured shear forces and the friction coefficients. In addition, the electroadhesive forces obtained in a 5 d period in an ambient environment have highlighted the importance of controlling the environment when testing the pads to validate the models. Based on the confident experimental platform and procedure, the results obtained have validated the theoretical results. The results are useful insights for the investigation into environmentally stable and optimized electroadhesives

    Investigation of relationship between interfacial electroadhesive force and surface texture

    Get PDF
    A novel investigation into the relationship between the obtainable interfacial electroadhesive forces and different surface textures is presented in this paper. Different surface textures were generated then characterized based on a recognized areal-based non-contact surface texture measurement platform and procedure. An advanced electroadhesive force measurement platform and procedure were then implemented to measure the obtainable electroadhesive forces on those different surface textures. The results show that the obtained interfacial electroadhesive forces increase with decreasing Sq (root mean square height) value of the substrate surface provided that the difference in Sq between the different substrates is over 5 μm. Also, the higher the applied voltage, the larger the relative increase in electroadhesive forces observed. However, when the difference of Sq value between different substrate surfaces is below 2 μm, the obtained interfacial electroadhesive forces do not necessarily increase with decreasing Sq. Furthermore, the obtainable electroadhesive forces are not necessarily the same when the Sq value of two substrate surfaces are the same due to the fact that the direction of the surface texture plays an important role in achieving electroadhesive forces

    Toward adaptive and intelligent electroadhesives for robotic material handling

    Get PDF
    An autonomous, adaptive, and intelligent electroadhesive material handling system has been presented in this paper. The system has been proposed and defined based on the identification of a system need through a comprehensive literature review and laboratory-based experimental tests. The proof of the proposed concept has been implemented by a low cost and novel electroadhesive pad design and manufacture process, and a mechatronic and reconfigurable platform, where force, humidity, and capacitive sensors have been employed. This provides a solution to an autonomous elelctroadhesive material handling system that is environmentally and substrate material adaptive. The results have shown that the minimum voltage can be applied to robustly grasp different materials under different environment conditions. The proposed system is particularly useful for pick-and-place applications where various types of materials and changing environments exist such as robotic material handling applications in the textile and waste recycling industry

    Geometric optimisation of electroadhesive actuators based on 3D electrostatic simulation and its experimental verification

    Get PDF
    A systematic research methodology for the performance evaluation of different electroadhesive pad geometries is demonstrated in this paper. The proposed research method for the investigation was based on a 3D electrostatic simulation using COMSOL Multiphysics, a cost-effective electroadhesive pad design and manufacturing process based on solid-ink printing, chemical etching, conformal coating, and an advanced and mechatronic electroadhesive force testing platform and procedure. The method has been validated using 2 novel pad designs, approximate 21 cm x 19 cm, compared with the normal comb design, on the glass and aluminium plate. The experimental results showed that: 1) on the glass substrate, a relative increase of 1% and 28% in the electroadhesive forces obtainable can be seen in the curve-comb pad and the worm-comb pad respectively; and 2) on the Al substrate, a relative increase of 5% and 12% can be seen. This manifests that the two new pad designs, especially the worm-comb shape design, are better at generating larger electroadhesive forces. The comparison between the simulation results and experimental results proved that proposed method is promising for evaluating the pad design before spending time and money on pad manufacture and testing

    Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling

    No full text
    An autonomous, adaptive, and intelligent electroadhesive material handling system has been presented in this paper. The system has been proposed and defined based on the identification of a system need through a comprehensive literature review and laboratory-based experimental tests. The proof of the proposed concept has been implemented by a low cost and novel electroadhesive pad design and manufacture process, and a mechatronic and reconfigurable platform, where force, humidity, and capacitive sensors have been employed. This provides a solution to an autonomous elelctroadhesive material handling system that is environmentally and substrate material adaptive. The results have shown that the minimum voltage can be applied to robustly grasp different materials under different environment conditions. The proposed system is particularly useful for pick-and-place applications where various types of materials and changing environments exist such as robotic material handling applications in the textile and waste recycling industry
    corecore