58 research outputs found
Line Emitting Galaxies Beyond a Redshift of 7: An Improved Method for Estimating the Evolving Neutrality of the Intergalactic Medium
The redshift-dependent fraction of color-selected galaxies revealing Lyman
alpha emission has become the most valuable constraint on the evolving
neutrality of the early intergalactic medium. However, in addition to resonant
scattering by neutral gas, the visibility of Lyman alpha is also dependent on
the intrinsic properties of the host galaxy, including its stellar population,
dust content and the nature of outflowing gas. Taking advantage of significant
progress we have made in determining the line emitting properties of galaxies, we propose an improved method, based on using the measured
slopes of the rest-frame ultraviolet continua of galaxies, to interpret the
growing body of near-infrared spectra of galaxies in order to take into
account these host galaxy dependencies. In a first application of our new
method, we demonstrate its potential via a new spectroscopic survey of
galaxies undertaken with the Keck MOSFIRE spectrograph. Together with earlier
published data our data provides improved estimates of the evolving visibility
of Lyman alpha, particularly at redshift . As a byproduct, we also
present a new line emitting galaxy at a redshift which supersedes an
earlier redshift record. We discuss the improving constraints on the evolving
neutral fraction over and the implications for cosmic reionization.Comment: To be submitted to Ap
New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign
Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time, systematically explored the galaxy population deep into the era when cosmic microwave background (CMB) data indicate reionization was underway. The UDF12 campaign thus provides the best constraints to date on the abundance, luminosity distribution, and spectral properties of early star-forming galaxies. We synthesize the new UDF12 results with the most recent constraints from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity densities, reionization histories, and electron scattering optical depth evolution consistent with the available data. Under reasonable assumptions about the escape fraction of hydrogen-ionizing photons and the intergalactic medium clumping factor, we find that to fully reionize the universe by redshift z ~ 6 the population of star-forming galaxies at redshifts z ~ 7-9 likely must extend in luminosity below the UDF12 limits to absolute UV magnitudes of M UV ~ –13 or fainter. Moreover, low levels of star formation extending to redshifts z ~ 15-25, as suggested by the normal UV colors of z ≃ 7-8 galaxies and the smooth decline in abundance with redshift observed by UDF12 to z ≃ 10, are additionally likely required to reproduce the optical depth to electron scattering inferred from CMB observations
Keck Spectroscopy of Gravitationally Lensed z=4 Galaxies: Improved Constraints on the Escape Fraction of Ionizing Photons
The fraction of ionizing photons that escape from young star-forming galaxies
is one of the largest uncertainties in determining the role of galaxies in
cosmic reionization. Yet traditional techniques for measuring this fraction are
inapplicable at the redshifts of interest due to foreground screening by the
Lyman alpha forest. In an earlier study, we demonstrated a reduction in the
equivalent width of low-ionization absorption lines in composite spectra of
Lyman break galaxies at z=4 compared to similar measures at z=3. This might
imply a lower covering fraction of neutral gas and hence an increase with
redshift in the escape fraction of ionizing photons. However, our spectral
resolution was inadequate to differentiate between several alternative
explanations, including changes with redshift in the outflow kinematics. Here
we present higher quality spectra of 3 gravitationally lensed Lyman break
galaxies at z=4 with a spectral resolution sufficient to break this degeneracy
of interpretation. We present a method for deriving the covering fraction of
low-ionization gas as a function of outflow velocity and compare the results
with similar quality data taken for galaxies at lower redshift. We find a
significant trend of lower covering fractions of low-ionization gas for
galaxies with strong \Lya emission. In combination with the demographic trends
of \Lya emission with redshift from our earlier work, our results provide new
evidence for a reduction in the average H I covering fraction, and hence an
increase in the escape fraction of ionizing radiation from Lyman break
galaxies, with redshift.Comment: submitted to Ap
Contamination of Broadband Photometry by Nebular Emission in High-redshift Galaxies: Investigations with Keck's MOSFIRE Near-infrared Spectrograph
Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≃ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≃ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy
New Constraints on Cosmic Reionization from the 2012 Hubble Ultra Deep Field Campaign
Understanding cosmic reionization requires the identification and
characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble
Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with
the Wide Field Camera 3 aboard Hubble Space Telescope and, for the first time,
systematically explored the galaxy population deep into the era when cosmic
microwave background (CMB) data indicates reionization was underway. The UDF12
campaign thus provides the best constraints to date on the abundance,
luminosity distribution, and spectral properties of early star-forming
galaxies. We synthesize the new UDF12 results with the most recent constraints
from CMB observations to infer redshift-dependent ultraviolet (UV) luminosity
densities, reionization histories, and electron scattering optical depth
evolution consistent with the available data. Under reasonable assumptions
about the escape fraction of hydrogen ionizing photons and the intergalactic
medium clumping factor, we find that to fully reionize the universe by redshift
z~6 the population of star-forming galaxies at redshifts z~7-9 likely must
extend in luminosity below the UDF12 limits to absolute UV magnitudes of
M_UV\sim -13 or fainter. Moreover, low levels of star formation extending to
redshifts z~15-25, as suggested by the normal UV colors of z\simeq7-8 galaxies
and the smooth decline in abundance with redshift observed by UDF12 to
z\simeq10, are additionally likely required to reproduce the optical depth to
electron scattering inferred from CMB observations.Comment: Version accepted by ApJ (originally submitted Jan 5, 2013). The UDF12
website can be found at http://udf12.arizona.ed
Keck Spectroscopy of 3<z<7 Faint Lyman Break Galaxies: The Importance of Nebular Emission in Understanding the Specific Star Formation Rate and Stellar Mass Density
The physical properties inferred from the SEDs of z>3 galaxies have been
influential in shaping our understanding of early galaxy formation and the role
galaxies may play in cosmic reionization. Of particular importance is the
stellar mass density at early times which represents the integral of earlier
star formation. An important puzzle arising from the measurements so far
reported is that the specific star formation rates (sSFR) evolve far less
rapidly than expected in most theoretical models. Yet the observations
underpinning these results remain very uncertain, owing in part to the possible
contamination of rest-optical broadband light from strong nebular emission
lines. To quantify the contribution of nebular emission to broad-band fluxes,
we investigate the SEDs of 92 spectroscopically-confirmed galaxies in the
redshift range 3.8<z<5.0 chosen because the H-alpha line lies within the
Spitzer/IRAC 3.6 um filter. We demonstrate that the 3.6 um flux is
systematically in excess of that expected from stellar continuum, which we
derive by fitting the SED with population synthesis models. No such excess is
seen in a control sample at 3.1<z<3.6 in which there is no nebular
contamination in the IRAC filters. From the distribution of our 3.6 um flux
excesses, we derive an H-alpha equivalent width (EW) distribution. The mean
rest-frame H-alpha EW we infer at 3.8<z<5.0 (270 A) indicates that nebular
emission contributes at least 30% of the 3.6 um flux. Via our
empirically-derived EW distribution we correct the available stellar mass
densities and show that the sSFR evolves more rapidly at z>4 than previously
thought, supporting up to a 5x increase between z~2 and 7. Such a trend is much
closer to theoretical expectations. Given our findings, we discuss the
prospects for verifying quantitatively the nebular emission line strengths
prior to the launch of the James Webb Space Telescope.Comment: 16 pages, 9 figures, submitted to Ap
Modeling and characterization of the SPIDER half-wave plate
Spider is a balloon-borne array of six telescopes that will observe the
Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the
instrument will make a polarization map of the CMB with approximately one-half
degree resolution at 145 GHz. Polarization modulation is achieved via a
cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have
measured millimeter-wave transmission spectra of the sapphire at room and
cryogenic temperatures. The spectra are consistent with our physical optics
model, and the data gives excellent measurements of the indices of A-cut
sapphire. We have also taken preliminary spectra of the integrated HWP, optical
system, and detectors in the prototype Spider receiver. We calculate the
variation in response of the HWP between observing the CMB and foreground
spectra, and estimate that it should not limit the Spider constraints on
inflation
The UV Luminosity Function of Star-forming Galaxies via Dropout Selection at Redshifts z ~ 7 and 8 from the 2012 Ultra Deep Field Campaign
We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z ≃ 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe ~0.65 (0.25) mag fainter in absolute UV magnitude, at z ~ 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z ~ 7 and 27 at z ~ 8. Incorporating brighter archival and ground-based samples, we measure the z ≃ 7 UV luminosity function to an absolute magnitude limit of M_(UV) = –17 and find a faint end Schechter slope of ɑ =-1.87^(+0.18)_(-0.17). Using a similar color-color selection at z ≃ 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z ≃ 8, ɑ =-1.94^(+0.21)_(-0.24). We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique
Modeling and characterization of the SPIDER half-wave plate
Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation
A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis
BACKGROUND: Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. METHODOLOGY: We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gambiae with one of 4 isolates of the microsporidian Vavraia culicis and reared one group as an uninfected control. Within each treatment, we fed half the adult females on a mix of P. berghei ookinetes and blood and inoculated the other half with a negatively charged CM-25 Sephadex bead to evaluate the mosquitoes' melanisation response. CONCLUSIONS: The microsporidian-infected mosquitoes were less likely to harbour oocysts (58.5% vs. 81.8%), harboured fewer oocysts (8.9 oocysts vs. 20.7 oocysts) if the malaria parasite did develop and melanised the Sephadex bead to a greater degree (73% vs. 35%) than the controls. While the isolates differed in the number of oocysts and in the melanisation response, the stimulation of the immune response was not correlated with either measure of malaria development. Nevertheless, the consistent difference between microsporidian-infected and -uninfected mosquitoes--more effective melanisation and less successful infection by malaria--suggests that microsporidians impede the development of malaria by priming the mosquito's immune system
- …