226 research outputs found
Britain’s slow movement to a gender egalitarian equilibrium: parents and employment in the UK 2001–13
This article examines the working lives of British couple families across the first decade of the millennium using EU Labour Force Survey data (2001–13) taking a multiple equilibria approach. Some growth in dual full-time earners, increased working hours of mothers in part-time employment and a growing proportion of households with ‘non-standard’ working patterns are all identified, suggesting both a convergence and greater diversity in economic provisioning within parent couple households. Household employment patterns remain strongly associated with maternal education and family size but are becoming less sensitive to the age of the youngest child. The dual full-time earner model is growing in significance for British parents of young children but a new gender egalitarian equilibrium has not yet been reached
Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting
Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring delta C-13 patterns among amino acids (delta C-13(AA)) could distinguish between multiple aquatic and terrestrial primary production sources. We found that delta C-13(AA) patterns in contrast to bulk delta C-13 values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their delta C-13(AA) patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk delta C-13 values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer delta C-13 patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs
Functional Reconstitution of a Tunable E3-Dependent Sumoylation Pathway in Escherichia coli
SUMO (small ubiquitin-related modifier) is a reversible post-translational protein modifier that alters the localization, activity, or stability of proteins to which it is attached. Many enzymes participate in regulated SUMO-conjugation and SUMO-deconjugation pathways. Hundreds of SUMO targets are currently known, with the majority being nuclear proteins. However, the dynamic and reversible nature of this modification and the large number of natively sumoylated proteins in eukaryotic proteomes makes molecular dissection of sumoylation in eukaryotic cells challenging. Here, we have reconstituted a complete mammalian SUMO-conjugation cascade in Escherichia coli cells that involves a functional SUMO E3 ligase, which effectively biases the sumoylation of both native and engineered substrate proteins. Our sumo-engineered E. coli cells have several advantages including efficient protein conjugation and physiologically relevant sumoylation patterns. Overall, this system provides a rapid and controllable platform for studying the enzymology of the entire sumoylation cascade directly in living cells
Planar organic spin valves using nanostructured Ni80Fe20 magnetic contacts
Planar organic spin valves were fabricated by evaporating organic semiconductor PTCDI-C13 onto pairs of patterned Ni80Fe20 magnetic nanowires separated by 120 nm. Control over the relative alignment of magnetisation in the nanowires was achieved by including a domain wall ‘nucleation pad’ at the end of one of the wires to ensure a large separation in magnetic switching fields. Switching behaviour was investigated by optical and X-ray magnetic imaging. Room temperature organic magnetoresistance of −0.35% was observed, which is large compared to that achieved in vertical spin valves with similar materials. We attribute the enhanced performance of the planar geometry to the deposition of the semiconductor on top of the metal, which improves the quality of metal–semiconductor interfaces compared to the metal-on-semiconductor interfaces in vertical spin valve
The PhanSST global database of Phanerozoic sea surface temperature proxy data
Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies
Spectroscopic and computational insights on catalytic synergy in bimetallic aluminophosphate catalysts
A combined electronic structure computational and X-ray absorption spectroscopy study was used to investigate the nature of the active sites responsible for catalytic synergy in Co-Ti bimetallic nanoporous frameworks. Probing the nature of the molecular species at the atomic level has led to the identification of a unique Co-O-Ti bond, which serves as the loci for the superior performance of the bimetallic catalyst, when compared with its analogous monometallic counterpart. The structural and spectroscopic features associated with this active site have been characterized and contrasted, with a view to affording structure property relationships, in the wider context of designing sustainable catalytic oxidations with porous solids
Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program
Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon
Current practice and surgical outcomes of neoadjuvant chemotherapy for early breast cancer : UK NeST study
Funding Information: This work was funded by a grant from the Association of Breast SurgeryPeer reviewedPublisher PD
Pangolins in global camera trap data: Implications for ecological monitoring
Despite being heavily exploited, pangolins (Pholidota: Manidae) have been subject to limited research, resulting in a lack of reliable population estimates and standardised survey methods for the eight extant species. Camera trapping represents a unique opportunity for broad-scale collaborative species monitoring due to its largely non-discriminatory nature, which creates considerable volumes of data on a relatively wide range of species. This has the potential to shed light on the ecology of rare, cryptic and understudied taxa, with implications for conservation decision-making. We undertook a global analysis of available pangolin data from camera trapping studies across their range in Africa and Asia. Our aims were (1) to assess the utility of existing camera trapping efforts as a method for monitoring pangolin populations, and (2) to gain insights into the distribution and ecology of pangolins. We analysed data collated from 103 camera trap surveys undertaken across 22 countries that fell within the range of seven of the eight pangolin species, which yielded more than half a million trap nights and 888 pangolin encounters. We ran occupancy analyses on three species (Sunda pangolin Manis javanica, white-bellied pangolin Phataginus tricuspis and giant pangolin Smutsia gigantea). Detection probabilities varied with forest cover and levels of human influence for P. tricuspis, but were low (<0.05) for all species. Occupancy was associated with distance from rivers for M. javanica and S. gigantea, elevation for P. tricuspis and S. gigantea, forest cover for P. tricuspis and protected area status for M. javanica and P. tricuspis. We conclude that camera traps are suitable for the detection of pangolins and large-scale assessment of their distributions. However, the trapping effort required to monitor populations at any given study site using existing methods appears prohibitively high. This may change in the future should anticipated technological and methodological advances in camera trapping facilitate greater sampling efforts and/or higher probabilities of detection. In particular, targeted camera placement for pangolins is likely to make pangolin monitoring more feasible with moderate sampling efforts
The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions
The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities
- …