26 research outputs found

    Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2)

    Get PDF
    BACKGROUND: The purpose of the present study was to continue the investigation of the membrane transport mechanisms of 20-(S)-camptothecin (CPT) in order to understand the possible role of membrane transporters on its oral bioavailability and disposition. METHODS: The intestinal transport kinetics of CPT were characterized using Caco-2 cells, MDCKII wild-type cells and MDCKII cells transfected with human P-glycoprotein (PGP) (ABCB1) or human multidrug resistance protein 2 (MRP2) (ABCC2). The effects of drug concentration, inhibitors and temperature on CPT directional permeability were determined. RESULTS: The absorptive (apical to basolateral) and secretory (basolateral to apical) permeabilities of CPT were found to be saturable. Reduced secretory CPT permeabilities with decreasing temperatures suggests the involvement of an active, transporter-mediated secretory pathway. In the presence of etoposide, the CPT secretory permeability decreased 25.6%. However, inhibition was greater in the presence of PGP and of the breast cancer resistant protein inhibitor, GF120918 (52.5%). The involvement of additional secretory transporters was suggested since the basolateral to apical permeability of CPT was not further reduced in the presence of increasing concentrations of GF120918. To investigate the involvement of specific apically-located secretory membrane transporters, CPT transport studies were conducted using MDCKII/PGP cells and MDCKII/MRP2 cells. CPT carrier-mediated permeability was approximately twofold greater in MDCKII/PGP cells and MDCKII/MRP2 cells than in MDCKII/wild-type cells, while the apparent K(m )values were comparable in all three cell lines. The efflux ratio of CPT in MDCKII/PGP in the presence of 0.2 μM GF120918 was not completely reversed (3.36 to 1.49). However, the decrease in the efflux ratio of CPT in MDCKII/MRP2 cells (2.31 to 1.03) suggests that CPT efflux was completely inhibited by MK571, a potent inhibitor of the Multidrug Resistance Protein transporter family. CONCLUSIONS: The current results provide evidence that PGP and MRP2 mediate the secretory transport of CPT in vitro. However, the involvement of other transporters cannot be ruled out based on these studies. Since these transporters are expressed in the intestine, liver and kidney variations in their expression levels and/or regulation may be responsible for the erratic oral absorption and biliary excretion of CPT observed in human subjects

    Phylogeny of Parasitic Parabasalia and Free-Living Relatives Inferred from Conventional Markers vs. Rpb1, a Single-Copy Gene

    Get PDF
    Parabasalia are single-celled eukaryotes (protists) that are mainly comprised of endosymbionts of termites and wood roaches, intestinal commensals, human or veterinary parasites, and free-living species. Phylogenetic comparisons of parabasalids are typically based upon morphological characters and 18S ribosomal RNA gene sequence data (rDNA), while biochemical or molecular studies of parabasalids are limited to a few axenically cultivable parasites. These previous analyses and other studies based on PCR amplification of duplicated protein-coding genes are unable to fully resolve the evolutionary relationships of parabasalids. As a result, genetic studies of Parabasalia lag behind other organisms.Comparing parabasalid EF1α, α-tubulin, enolase and MDH protein-coding genes with information from the Trichomonas vaginalis genome reveals difficulty in resolving the history of species or isolates apart from duplicated genes. A conserved single-copy gene encodes the largest subunit of RNA polymerase II (Rpb1) in T. vaginalis and other eukaryotes. Here we directly sequenced Rpb1 degenerate PCR products from 10 parabasalid genera, including several T. vaginalis isolates and avian isolates, and compared these data by phylogenetic analyses. Rpb1 genes from parabasalids, diplomonads, Parabodo, Diplonema and Percolomonas were all intronless, unlike intron-rich homologs in Naegleria, Jakoba and Malawimonas.The phylogeny of Rpb1 from parasitic and free-living parabasalids, and conserved Rpb1 insertions, support Trichomonadea, Tritrichomonadea, and Hypotrichomonadea as monophyletic groups. These results are consistent with prior analyses of rDNA and GAPDH sequences and ultrastructural data. The Rpb1 phylogenetic tree also resolves species- and isolate-level relationships. These findings, together with the relative ease of Rpb1 isolation, make it an attractive tool for evaluating more extensive relationships within Parabasalia

    Intra-tumoural microvessel density in human solid tumours

    Get PDF
    Over the last decade assessment of angiogenesis has emerged as a potentially useful biological prognostic and predictive factor in human solid tumours. With the development of highly specific endothelial markers that can be assessed in histological archival specimens, several quantitative studies have been performed in various solid tumours. The majority of published studies have shown a positive correlation between intra-tumoural microvessel density, a measure of tumour angiogenesis, and prognosis in solid tumours. A minority of studies have not demonstrated an association and this may be attributed to significant differences in the methodologies employed for sample selection, immunostaining techniques, vessel counting and statistical analysis, although a number of biological differences may account for the discrepancy. In this review we evaluate the quantification of angiogenesis by immunohistochemistry, the relationship between tumour vascularity and metastasis, and the clinicopathological studies correlating intra-tumoral microvessel density with prognosis and response to anti-cancer therapy. In view of the extensive nature of this retrospective body of data, comparative studies are needed to identify the optimum technique and endothelial antigens (activated or pan-endothelial antigens) but subsequently prospective studies that allocate treatment on the basis of microvessel density are required

    Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases

    Get PDF
    Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer’s disease, atypical neurodegenerative dementias and Parkinson’s disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases

    Current concepts in clinical radiation oncology

    Get PDF

    Peripheral blood antigen-presenting cells from African–Americans exhibit increased CD80 and CD86 expression

    No full text
    Despite the increased incidence and severity of many autoimmune diseases and transplant rejection in African–Americans (AA) compared with Caucasians (CS), very few studies have addressed issues of racial variation during antigen presentation. This investigation was performed as a preliminary exploration of differences in peripheral blood cell costimulatory functions between healthy AA (n = 20) and CS (n = 20) subjects. The expression of surface costimulatory molecules on peripheral blood cells, mononuclear cells enriched by Ficoll density centrifugation, and plastic adherent antigen-presenting cells (APC) was determined by flow cytometry using fluorescent-labelled MoAbs. The expression of both B7 costimulatory molecules was significantly higher on the cells from AA subjects compared with cells from CS subjects (CD80, P < 0.05; CD86, P < 0.05). Also, following 18 h of culture with rhIL-1β, there was a significant increase in the percentage of APC from AA expressing high levels of the costimulatory molecule CD80 (P < 0.05). Costimulatory function during mitogen and antigen presentation was determined by 3H-thymidine incorporation during T cell proliferation. Purified T cells from AA subjects demonstrated significantly increased proliferation to phytohaemagglutinin (PHA). The differences reported here suggest that racial variations in peripheral blood APC characteristics may exist. Given the importance of costimulation in maintaining long-term immune responses, these data suggest a further direction for the investigation of racial disparity in autoimmune disease pathology and transplant rejection rates
    corecore