2 research outputs found

    Trans-Plasma Membrane Electron Transport and Ascorbate Efflux by Skeletal Muscle

    No full text
    Trans-plasma membrane electron transport (tPMET) and the antioxidant roles of ascorbate reportedly play a role in protection of cells from damage by reactive oxygen species, which have been implicated in causing metabolic dysfunction such as insulin resistance. Skeletal muscle comprises the largest whole-body organ fraction suggesting a potential role of tPMET and ascorbate export as a major source of extracellular antioxidant. We hypothesized that skeletal muscle is capable of tPMET and ascorbate efflux. To measure these processes, we assayed the ability of cultured muscle cells, satellite cells, and isolated extensor digitorum longus (EDL) and soleus (SOL) to reduce two extracellular electron acceptors, water soluble tetrazolium salt 1 (WST-1), and dichlorophenolindophenol (DPIP). Ascorbate oxidase (AO) was utilized to determine which portion of WST-1 reduction was dependent on ascorbate efflux. We found that muscle cells can reduce extracellular electron acceptors. In C2C12 myotubes and satellite cells, a substantial portion of this reduction was dependent on ascorbate. In myotubes, glucose transporter 1 (GLUT1) inhibitors along with a pan-GLUT inhibitor suppressed tPMET and ascorbate efflux, while a GLUT4 inhibitor had no effect. The adenosine 5′-monophosphate (AMP)-activated protein kinase activator 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) suppressed both tPMET and ascorbate efflux by myotubes, while insulin had no effect. Taken together, our data suggest that muscle cells are capable of tPMET and ascorbate efflux supported by GLUT1, thus illustrating a model in which resting muscle exports electrons and antioxidant to the extracellular environment

    Surface electromyography using dry polymeric electrodes.

    Get PDF
    Conventional wet Ag/AgCl electrodes are widely used in electrocardiography, electromyography (EMG), and electroencephalography (EEG) and are considered the gold standard for biopotential measurements. However, these electrodes require substantial skin preparation, are single use, and cannot be used for continuous monitoring (>24 h). For these reasons, dry electrodes are preferable during surface electromyography (sEMG) due to their convenience, durability, and longevity. Dry conductive elastomers (CEs) combine conductivity, flexibility, and stretchability. In this study, CEs combining poly(3,4-ehtylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) in polyurethane are explored as dry, skin contacting EMG electrodes. This study compares these CE electrodes to commercial wet Ag/AgCl electrodes in five subjects, classifying four movements: open hand, fist, wrist extension, and wrist flexion. Classification accuracy is tested using a backpropagation artificial neural network. The control Ag/AgCl electrodes have a 98.7% classification accuracy, while the dry conductive elastomer electrodes have a classification accuracy of 99.5%. As a conclusion, PEDOT based dry CEs were shown to successfully function as on-skin electrodes for EMG recording, matching the performance of Ag/AgCl electrodes, while addressing the need for minimal skin prep, no gel, and wearable technology
    corecore