95 research outputs found
Recommended from our members
US ITER limiter module design
The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology
Recommended from our members
Performance limits of fusion first-wall structural materials.
Key features of fusion energy relate primarily to potential advantages associated with safety and environmental considerations and the near endless supply of fuel. However, it is generally concluded that high performance fusion power systems will be required in order to be economically competitive with other energy options. As in most energy systems, structural materials operating limits pose a primary constraint to the performance of fusion power systems. It is also recognized that for the case of fusion power, the first-wall/blanket system will have a dominant impact on both the economic and safety/environmental attractiveness of fusion energy. The first-wall blanket structure is particularly critical since it must maintain high integrity at relatively high temperatures during exposure to high radiation levels, high surface heat fluxes, and significant primary stresses. The performance limits of the first-wall/blanket structure will be dependent on the structural material properties, the coolant/breeder system, and the specific design configuration. Key factors associated with high performance structural materials include (1) high temperature operation, (2) a large operating temperature window, and (3) a long operating lifetime. High temperature operation is necessary to provide for high power conversion efficiency. As discussed later, low-pressure coolant systems provide significant advantages. A large operating temperature window is necessary to accommodate high surface heating and high power density. The operating temperature range for the structure must include the temperature gradient through the first wall and the coolant system AT required for efficient energy conversion. This later requirement is dependent on the coolant/breeder operating temperature limits. A long operating lifetime of the structure is important to improve system availability and to minimize waste disposition
Recommended from our members
MHD considerations for a self-cooled liquid lithium blanket
The magnetohydrodynamic (MHD) effects can present a feasibility issue for a self-cooled liquid metal blanket of magnetically confined fusion reactors, especially inboard regime of a tokamak. This pressure drop can be significantly reduced by using insulated wall structure. A self-healing insulating coating has been identified, which will reduce the pressure drop by more than a factor of 10. The future research direction to further quantify the performance of this coating is also outlined
Recommended from our members
MHD considerations for a self-cooled liquid lithium blanket
The magnetohydrodynamic (MHD) effects can present a feasibility issue for a self-cooled liquid metal blanket of magnetically confined fusion reactors, especially inboard regime of a tokamak. This pressure drop can be significantly reduced by using insulated wall structure. A self-healing insulating coating has been identified, which will reduce the pressure drop by more than a factor of 10. The future research direction to further quantify the performance of this coating is also outlined
Recommended from our members
Alternate-fuel reactor studies
A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a /sup 3/He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding
Routes to sustainability in public food procurement: An investigation of different models in primary school catering
Increasingly, policymakers are setting ambitious goals for sustainability in public procurement, integrated across different pillars. Such ambitions are apparent in public catering services, where procurement models have been shifting towards greater localisation of supply chains and purchasing of more organically grown food. To date however, few studies have examined empirically what the impacts of different procurement models are across these multiple pillars of sustainability. This research aimed to fill the gap, by measuring and comparing the environmental, economic and nutritional outcomes of different models of school meals procurement. Case studies were undertaken of ten primary school meals services in five European countries, capturing different procurement model types. Results showed carbon emissions ranged from 0.95 kgs CO2e per meal in the lowest case to 2.41 kgs CO2e in the highest case, with adoption of low carbon food waste disposal methods and reduction of the amount of ruminant meat in the menus being the most important actions for lowering emissions. In terms of economic impact, local economic multiplier ratios ranged from 1.59 to 2.46, and although the level of local food sourcing contributed to these ratios, the effect was eclipsed, in some cases, by investment in local catering staff. Meanwhile, implementation of a robust standards regime and improving canteen environment and supervision were the most important actions for nutritional quality and intake. The paper discusses the implications of the findings for integrated, sustainable models of food procurement
Recommended from our members
The fabrication of a vanadium-stainless steel test section for MHD testing of insulator coatings in flowing lithium
To test the magnetohydrodynamic (MHD) pressure drop reduction performance of candidate insulator coatings for the ITER Vanadium/Lithium Breeding Blanket, a test section comprised of a V- 4Cr-4Ti liner inside a stainless steel pipe was designed and fabricated. Theoretically, the MHD pressure drop reduction benefit resulting, from an electrically insulating coating on a vanadium- lined pipe is identical to the benefit derived from an insulated pipe fabricated of vanadium alone. A duplex test section design consisting of a V alloy liner encased in a SS pressure boundary provided protection for vanadium from atmospheric contamination during operation at high temperature and obviated any potential problems with vanadium welding while also minimizing the amount of V alloy material required. From the MHD and insulator coating- point of view, the test section outer SS wall and inner V alloy liner can be modeled simply as a wall having a sandwich construction. Two 52.3 mm OD x 2.9 m long V-alloy tubes were fabricated by Century Tubes from 64 mm x 200 mm x 1245 mm extrusions produced by Teledyne Wah Chang. The test section`s duplex structure was subsequently fabricated at Century Tubes by drawing down a SS pipe (2 inch schedule 10) over one of the 53.2 mm diameter V tubes
Recommended from our members
US assessment of free surface liquid metal divertors -- Design analysis and R and D needs
One of the objectives of the restructured US Fusion Energy Sciences Program is to identify and evaluate new high performance concepts for advanced technology with high neutron wall load capability and attractive safety and environmental features. One promising technology specified by the Advanced Technologies and Materials Working Group is liquid plasma-facing surfaces for divertors. Some of the possible advantages of using liquid surfaces in divertors, relative to conventional solid surface approaches, include higher surface heat flux capability, continuously renewable surfaces, and higher temperature operation. A planning activity has been undertaken to identify the work to be performed over approximately three years to evaluate liquid surface concepts on the basis of such factors as their compatibility with fusion plasmas, high power density handling capabilities, engineering feasibility, lifetime, safety, and R and D requirements. A group, known as the Advanced Liquid Plasma-facing Surface (ALPS) planning group, was organized to prepare a plan for the activities needed to conduct such an evaluation. This paper will summarize the work of the ALPS group including recommendations on specific activities and a tentative schedule
Recommended from our members
International Thermonuclear Experimental Reactor (ITER) divertor plate performance and lifetime considerations
The ITER divertor plate performance during the technology phase of operation has been analyzed. High-Z materials, such as tungsten and tantalum, have been considered as plasma side materials, and refractory metal alloys, Ta-10W, TZM, Nb-1Zr, and V-15Cr-5Ti, plus copper alloys have been considered as the structural materials. The fatigue lifetime have been predicted for structural plates and for duplex plates with the plasma side material bonded to the structure. The results indicate that refractory alloys have a comparable or improved performance to copper alloys. Peak allowable heat fluxes for these analyses are in the range of 15--20 MW/m{sup 2} for 2 mm thick structural plates and 7--11 MW/m{sup 2} for 4 mm thick duplex plates. 4 refs., 55 figs., 6 tabs
- …