3,745 research outputs found

    Modeling with structure of resins in electonic compornents

    Get PDF
    In recent years, interfacial fracture becomes one of the most important problems in the assessment of reliability of electronics packaging. Especially, underfill resin is used with solder joints in flip chip packaging for preventing the thermal fatigue fracture in solder joints. In general, the interfacial strength has been evaluated on the basis of interfacial fracture mechanics concept. However, as the size of devices decrease, it is difficult to evaluate the interfacial strength quantitatively. Most of researches in the interfacial fracture were conducted on the basis of the assumption of the perfectly bonding condition though the interface has the micro-scale structure and the bonding is often imperfect. In this study, the mechanical model of the interfacial structure of resin in electronic components was proposed. Bimaterial model with the imperfect bonding condition was examined by using a finite element analysis (FEA). Stress field in the vicinity of interface depends on the interfacial structure with the imperfect bonding. In the front of interfacial crack tip, the behavior of process zone is affected by interfacial structure. However, the instability of fracture for macroscopic crack which means the fracture toughness is governed by the stress intensity factor based on the fracture mechanics concept.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Recent Advances in Fluorescent Labeling Techniques for Fluorescence Microscopy

    Get PDF
    Tremendous progress in recent computer-controlled systems for fluorescence and laser-confocal microscopy has provided us with powerful tools to visualize and analyze molecular events in the cells. Various fluorescent staining and labeling techniques have also been developed to be used with these powerful instruments. Fluorescent proteins such as green fluorescent protein (GFP) allow us to directly label particular proteins of interest in living cells. This technique has been extended over a large area of cell biology, and a variety of fluorescent protein-derived techniques have been developed to visualize the functions and conditions of the molecules within living cells. In this review, we summarize the techniques for fluorescent staining and labeling for recent fluorescence microscopy

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: II. Linear Behavior in Neutral-to-Ionic Transition

    Full text link
    Dynamics of charge density and lattice displacements after the neutral phase is photoexcited is studied by solving the time-dependent Schr\"odinger equation for a one-dimensional extended Peierls-Hubbard model with alternating potentials. In contrast to the ionic-to-neutral transition studied previously, the neutral-to-ionic transition proceeds in an uncooperative manner as far as the one-dimensional system is concerned. The final ionicity is a linear function of the increment of the total energy. After the electric field is turned off, the electronic state does not significantly change, roughly keeping the ionicity, even if the transition is not completed, because the ionic domains never proliferate. As a consequence, an electric field with frequency just at the linear absorption peak causes the neutral-to-ionic transition the most efficiently. These findings are consistent with the recent experiments on the mixed-stack organic charge-transfer complex, TTF-CA. We artificially modify or remove the electron-lattice coupling to discuss the origin of such differences between the two transitions.Comment: 17 pages, 9 figure

    Lepton Flavor Violation in SUSY GUT Model with Non-universal Sfermion Masses

    Get PDF
    We analyze lepton flavor violating τμγ\tau \to \mu \gamma and μeγ\mu \to e \gamma processes in SUSY GUT model in which sfermions have special mass spectrum. It is assumed that only third generation sfermions which are contained in 10(Q,Uc,Ec){\bf 10}(Q, U^c, E^c) of SU(5) can have a different mass from the others. This mass spectrum is led from E6E_6 GUT model with horizontal symmetries. It is shown that branching ratios of τμγ\tau \to \mu \gamma and μeγ\mu \to e \gamma depend strongly on a right-handed stau mass. The weak scale stability requires the light stau, so large decay rates can be expected in this scenario. When stau is around 150 GeV and tanβ10\tan \beta \sim 10, the branching ratios can be larger than Br(τμγ)108Br(\tau \to \mu \gamma) \simeq 10^{-8} and Br(μeγ)5×1012Br(\mu \to e \gamma) \simeq 5\times 10^{-12}, which are within reach of future experiments. In addition, this model has an interesting feature that the final state charged lepton tends to have the right-handed chirality.Comment: 17 pages, 12 figures, v3 a reference adde
    corecore