279 research outputs found

    RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints

    Full text link
    We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an unaligned object dataset. RotationNet is designed to use only a partial set of multi-view images for inference, and this property makes it useful in practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves the state-of-the-art performance on an object pose estimation dataset. The code is available on https://github.com/kanezaki/rotationnetComment: 24 pages, 23 figures. Accepted to CVPR 201

    ヘルダーの作品群における感覚論とその受容

    Get PDF
    関西大学独逸文学会研究発表概要(第109回研究発表会)[Resümee der Referate bei der Tagung 2016

    Multi-View Azimuth Stereo via Tangent Space Consistency

    Full text link
    We present a method for 3D reconstruction only using calibrated multi-view surface azimuth maps. Our method, multi-view azimuth stereo, is effective for textureless or specular surfaces, which are difficult for conventional multi-view stereo methods. We introduce the concept of tangent space consistency: Multi-view azimuth observations of a surface point should be lifted to the same tangent space. Leveraging this consistency, we recover the shape by optimizing a neural implicit surface representation. Our method harnesses the robust azimuth estimation capabilities of photometric stereo methods or polarization imaging while bypassing potentially complex zenith angle estimation. Experiments using azimuth maps from various sources validate the accurate shape recovery with our method, even without zenith angles.Comment: CVPR 2023 camera-ready. Appendices after references. 16 pages, 20 figures. Project page: https://xucao-42.github.io/mvas_homepage
    corecore