279 research outputs found
RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints
We propose a Convolutional Neural Network (CNN)-based model "RotationNet,"
which takes multi-view images of an object as input and jointly estimates its
pose and object category. Unlike previous approaches that use known viewpoint
labels for training, our method treats the viewpoint labels as latent
variables, which are learned in an unsupervised manner during the training
using an unaligned object dataset. RotationNet is designed to use only a
partial set of multi-view images for inference, and this property makes it
useful in practical scenarios where only partial views are available. Moreover,
our pose alignment strategy enables one to obtain view-specific feature
representations shared across classes, which is important to maintain high
accuracy in both object categorization and pose estimation. Effectiveness of
RotationNet is demonstrated by its superior performance to the state-of-the-art
methods of 3D object classification on 10- and 40-class ModelNet datasets. We
also show that RotationNet, even trained without known poses, achieves the
state-of-the-art performance on an object pose estimation dataset. The code is
available on https://github.com/kanezaki/rotationnetComment: 24 pages, 23 figures. Accepted to CVPR 201
ヘルダーの作品群における感覚論とその受容
関西大学独逸文学会研究発表概要(第109回研究発表会)[Resümee der Referate bei der Tagung 2016
Multi-View Azimuth Stereo via Tangent Space Consistency
We present a method for 3D reconstruction only using calibrated multi-view
surface azimuth maps. Our method, multi-view azimuth stereo, is effective for
textureless or specular surfaces, which are difficult for conventional
multi-view stereo methods. We introduce the concept of tangent space
consistency: Multi-view azimuth observations of a surface point should be
lifted to the same tangent space. Leveraging this consistency, we recover the
shape by optimizing a neural implicit surface representation. Our method
harnesses the robust azimuth estimation capabilities of photometric stereo
methods or polarization imaging while bypassing potentially complex zenith
angle estimation. Experiments using azimuth maps from various sources validate
the accurate shape recovery with our method, even without zenith angles.Comment: CVPR 2023 camera-ready. Appendices after references. 16 pages, 20
figures. Project page: https://xucao-42.github.io/mvas_homepage
- …