1,962 research outputs found
Distributed Stochastic Optimization of the Regularized Risk
Many machine learning algorithms minimize a regularized risk, and stochastic
optimization is widely used for this task. When working with massive data, it
is desirable to perform stochastic optimization in parallel. Unfortunately,
many existing stochastic optimization algorithms cannot be parallelized
efficiently. In this paper we show that one can rewrite the regularized risk
minimization problem as an equivalent saddle-point problem, and propose an
efficient distributed stochastic optimization (DSO) algorithm. We prove the
algorithm's rate of convergence; remarkably, our analysis shows that the
algorithm scales almost linearly with the number of processors. We also verify
with empirical evaluations that the proposed algorithm is competitive with
other parallel, general purpose stochastic and batch optimization algorithms
for regularized risk minimization
WordRank: Learning Word Embeddings via Robust Ranking
Embedding words in a vector space has gained a lot of attention in recent
years. While state-of-the-art methods provide efficient computation of word
similarities via a low-dimensional matrix embedding, their motivation is often
left unclear. In this paper, we argue that word embedding can be naturally
viewed as a ranking problem due to the ranking nature of the evaluation
metrics. Then, based on this insight, we propose a novel framework WordRank
that efficiently estimates word representations via robust ranking, in which
the attention mechanism and robustness to noise are readily achieved via the
DCG-like ranking losses. The performance of WordRank is measured in word
similarity and word analogy benchmarks, and the results are compared to the
state-of-the-art word embedding techniques. Our algorithm is very competitive
to the state-of-the- arts on large corpora, while outperforms them by a
significant margin when the training set is limited (i.e., sparse and noisy).
With 17 million tokens, WordRank performs almost as well as existing methods
using 7.2 billion tokens on a popular word similarity benchmark. Our multi-node
distributed implementation of WordRank is publicly available for general usage.Comment: Conference on Empirical Methods in Natural Language Processing
(EMNLP), November 1-5, 2016, Austin, Texas, US
Application potential of cold neutron radiography in plant science research
Though comprehensive knowledge of water status and water flow are important prerequisites for plant in many aspects of modern plant science truly non-destructive methods for the in-situ study of water transport are rare. Advanced imaging methods such as Magnetic Resonance Imaging (MRI) or Cold Neutron Radiography (CNR) may be applied to fill this gap. In CNR strong interaction of cold neutrons with hydrogen provides a high contrast even for small amounts of water. The combination of CNR with the low-contrast tracer D2O allows the direct visualisation of water flow and the calculation of water flow rates in plants with a high resolution at the tissue level. Here, we give a general introduction into this method, describe their latest developments, report about studies applying neutron radiography in plant science and provide most recent results of our experiments in this field
Contribution of 3-D electrical resistivity tomography for landmines detection
Landmines are a type of inexpensive weapons
widely used in the pre-conflicted areas in many countries
worldwide. The two main types are the metallic and nonmetallic
(mostly plastic) landmines. They are most commonly
investigated by magnetic, ground penetrating radar
(GPR), and metal detector (MD) techniques. These geophysical
techniques however have significant limitations in
resolving the non-metallic landmines and wherever the host
materials are conductive. In this work, the 3-D electric resistivity
tomography (ERT) technique is evaluated as an alternative
and/or confirmation detection system for both landmine
types, which are buried in different soil conditions and
at different depths. This can be achieved using the capacitive
resistivity imaging system, which does not need direct
contact with the ground surface. Synthetic models for each
case have been introduced using metallic and non-metallic
bodies buried in wet and dry environments. The inversion
results using the L1 norm least-squares optimization method
tend to produce robust blocky models of the landmine body.
The dipole axial and the dipole equatorial arrays tend to have
the most favorable geometry by applying dynamic capacitive
electrode and they show significant signal strength for data
sets with up to 5% noise. Increasing the burial depth relative
to the electrode spacing as well as the noise percentage in the
resistivity data is crucial in resolving the landmines at different
environments. The landmine with dimension and burial
depth of one electrode separation unit is over estimated while
the spatial resolutions decrease as the burial depth and noise
percentage increase
Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations
The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome
of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential
(SP) and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal
field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at
the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been
formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away
from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the
high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation
to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation.
Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma,
the potential flow along the slope of the soma was expected to play an important role to promote the rapid
expansion of the geothermal field and the migration of the most active part
Lung adenocarcinoma with giant cyst formation showing a variety of histologic patterns: a case report
<p>Abstract</p> <p>Introduction</p> <p>Lung cancer with large cyst formation is relatively rare. This is a case report of a patient with lung cystic adenocarcinoma with multiple histologic patterns. This type of lung adenocarcinoma is believed to be the first reported case in English language medical literature.</p> <p>Case presentation</p> <p>A 60-year-old Japanese woman was admitted to hospital complaining of dyspnea and died of respiratory failure. She had been suffering from lung cancer with pleural effusion for five years. Autopsy analysis revealed lung adenocarcinoma with large cyst formation showing a variety of histologic patterns.</p> <p>Conclusions</p> <p>Autopsy analysis of this atypical case of lung cancer may provide insight and lead to a better understanding of the heterogeneity and clonal expansion of lung adenocarcinoma.</p
Special biconformal changes of K\"ahler surface metrics
The term "special biconformal change" refers, basically, to the situation
where a given nontrivial real-holomorphic vector field on a complex manifold is
a gradient relative to two K\"ahler metrics, and, simultaneously, an
eigenvector of one of the metrics treated, with the aid of the other, as an
endomorphism of the tangent bundle. A special biconformal change is called
nontrivial if the two metrics are not each other's constant multiples. For
instance, according to a 1995 result of LeBrun, a nontrivial special
biconformal change exists for the conformally-Einstein K\"ahler metric on the
two-point blow-up of the complex projective plane, recently discovered by Chen,
LeBrun and Weber; the real-holomorphic vector field involved is the gradient of
its scalar curvature. The present paper establishes the existence of nontrivial
special biconformal changes for some canonical metrics on Del Pezzo surfaces,
viz. K\"ahler-Einstein metrics (when a nontrivial holomorphic vector field
exists), non-Einstein K\"ahler-Ricci solitons, and K\"ahler metrics admitting
nonconstant Killing potentials with geodesic gradients.Comment: 16 page
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
- …