187 research outputs found

    Relation between the phenomenological interactions of the algebraic cluster model and the effective two--nucleon forces

    Get PDF
    We determine the phenomenological cluster--cluster interactions of the algebraic model corresponding to the most often used effective two--nucleon forces for the 16^{16}O + α\alpha system.Comment: Latex with Revtex, 1 figure available on reques

    DSP-based speed adaptive flux observer of induction motor

    Full text link

    Deformed Base Antisymmetrized Molecular Dynamics and its Application to ^{20}Ne

    Full text link
    A new theoretical framework named as deformed base antisymmetrized molecular dynamics that uses the localized triaxially deformed Gaussian as the single particle wave packet is presented. The model space enables us to describe sufficiently well the deformed mean-field structure as well as the cluster structure and their mixed structure within the same framework. The improvement over the original version of the antisymmetrized molecular dynamics which uses the spherical Gaussian is verified by the application to 20Ne^{20}{\rm Ne} nucleus. The almost pure α+16Og.s\alpha + ^{16}{\rm O_{g.s}} cluster structure of the KπK^\pi=00^- band, the distortion of the cluster structure in the KπK^\pi=01+0^+_1 band and the dominance of the deformed mean-field structure of the KπK^\pi=22^- band are confirmed and their observed properties are reproduced. Especially, the intra-band E2 transition probabilities in KπK^\pi=01+0^+_1 and 22^- bands are reproduced without any effective charge. Since it has been long known that the pure α+16Og.s.\alpha + ^{16}{\rm O}_{g.s.} cluster model underestimates the intra-band E2E2 transitions in the KπK^\pi=01+0^+_1 band by about 30%, we consider that this success is due to the sufficient description of the deformed mean-field structure in addition to the cluster structure by the present framework. From the successful description of 20Ne^{20}{\rm Ne}, we expect that the present framework presents us with a powerful approach for the study of the coexistence and interplay of the mean-field structure and the cluster structure

    Extended Hauser-Feshbach Method for Statistical Binary-Decay of Light-Mass Systems

    Get PDF
    An Extended Hauser-Feshbach Method (EHFM) is developed for light heavy-ion fusion reactions in order to provide a detailed analysis of all the possible decay channels by including explicitly the fusion-fission phase-space in the description of the cascade chain. The mass-asymmetric fission component is considered as a complex-fragment binary-decay which can be treated in the same way as the light-particle evaporation from the compound nucleus in statistical-model calculations. The method of the phase-space integrations for the binary-decay is an extension of the usual Hauser-Feshbach formalism to be applied to the mass-symmetric fission part. The EHFM calculations include ground-state binding energies and discrete levels in the low excitation-energy regions which are essential for an accurate evaluation of the phase-space integrations of the complex-fragment emission (fission). In the present calculations, EHFM is applied to the first-chance binary-decay by assuming that the second-chance fission decay is negligible. In a similar manner to the description of the fusion-evaporation process, the usual cascade calculation of light-particle emission from the highly excited complex fragments is applied. This complete calculation is then defined as EHFM+CASCADE. Calculated quantities such as charge-, mass- and kinetic-energy distributions are compared with inclusive and/or exclusive data for the 32^{32}S+24^{24}Mg and 35^{35}Cl+12^{12}C reactions which have been selected as typical examples. Finally, the missing charge distributions extracted from exclusive measurements are also successfully compared with the EHFM+CASCADE predictions.Comment: 34 pages, 6 Figures available upon request, Phys. Rev. C (to be published

    On the role of different Skyrme forces and surface corrections in exotic cluster-decay

    Full text link
    We present cluster decay studies of 56^{56}Ni^* formed in heavy-ion collisions using different Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lies within \pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics (2010

    Fission and cluster decay of 76^{76}Sr nucleus in the ground-state and formed in heavy-ion reactions

    Get PDF
    Calculations for fission and cluster decay of 76Sr^{76}Sr are presented for this nucleus to be in its ground-state or formed as an excited compound system in heavy-ion reactions. The predicted mass distribution, for the dynamical collective mass transfer process assumed for fission of 76Sr^{76}Sr, is clearly asymmetric, favouring α\alpha -nuclei. Cluster decay is studied within a preformed cluster model, both for ground-state to ground-state decays and from excited compound system to the ground-state(s) or excited states(s) of the fragments.Comment: 14 pages LaTeX, 5 Figures available upon request Submitted to Phys. Rev.

    Emission of intermediate mass fragments from hot 116^{116}Ba^* formed in low-energy 58^{58}Ni+58^{58}Ni reaction

    Full text link
    The complex fragments (or intermediate mass fragments) observed in the low-energy 58^{58}Ni+58^{58}Ni116\to ^{116}Ba^* reaction, are studied within the dynamical cluster decay model for s-wave with the use of the temperature-dependent liquid drop, Coulomb and proximity energies. The important result is that, due to the temperature effects in liquid drop energy, the explicit preference for α\alpha-like fragments is washed out, though the 12^{12}C (or the complementary 104^{104}Sn) decay is still predicted to be one of the most probable α\alpha-nucleus decay for this reaction. The production rates for non-α\alpha like intermediate mass fragments (IMFs) are now higher and the light particle production is shown to accompany the IMFs at all incident energies, without involving any statistical evaporation process in the model. The comparisons between the experimental data and the (s-wave) calculations for IMFs production cross sections are rather satisfactory and the contributions from other \ell-waves need to be added for a further improvement of these comparisons and for calculations of the total kinetic energies of fragments.Comment: 22 pages, 15 figure

    Pulmonary function testing in HTLV-I and HTLV-II infected humans: a cohort study

    Get PDF
    BACKGROUND: HTLV-I infection has been linked to lung pathology and HTLV-II has been associated with an increased incidence of pneumonia and acute bronchitis. However it is unknown whether HTLV-I or -II infection alters pulmonary function. METHODS: We performed pulmonary function testing on HTLV-I, HTLV-II and HTLV seronegative subjects from the HTLV outcomes study (HOST), including vital capacity (VC), forced expiratory volume in one second (FEV(1)), and diffusing lung capacity for carbon monoxide (DLCO) corrected for hemoglobin and lung volume. Multivariable analysis adjusted for differences in age, gender, race/ethnicity, height and smoking history. RESULTS: Mean (standard deviation) pulmonary function values among the 257 subjects were as follows: FVC = 3.74 (0.89) L, FEV(1 )= 2.93 (0.67) L, DLCO(corr )= 23.82 (5.89) ml/min/mmHg, alveolar ventilation (VA) = 5.25 (1.20) L and DLCO(corr)/VA = 4.54 (0.87) ml/min/mmHg/L. There were no differences in FVC, FEV1 and DLCO(corr)/VA by HTLV status. For DLCO(corr), HTLV-I and HTLV-II subjects had slightly lower values than seronegatives, but neither difference was statistically significant after adjustment for confounding. CONCLUSIONS: There was no difference in measured pulmonary function and diffusing capacity in generally healthy HTLV-I and HTLV-II subjects compared to seronegatives. These results suggest that previously described HTLV-associated abnormalities in bronchoalveolar cells and fluid may not affect pulmonary function

    Highly deformed 40^{40}Ca configurations in 28^{28}Si + 12^{12}C

    Full text link
    The possible occurrence of highly deformed configurations in the 40^{40}Ca di-nuclear system formed in the 28^{28}Si + 12^{12}C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurements of the heavy fragments (A \geq 10) and their associated light charged particles (protons and α\alpha particles) have been made at the IReS Strasbourg {\sc VIVITRON} Tandem facility at bombarding energies of Elab(28E_{lab} (^{28}Si) = 112 MeV and 180 MeV by using the {\sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in 40^{40}Ca at high spin.Comment: 33 pages, 11 figure

    Blockade of advanced glycation end product formation attenuates bleomycin-induced pulmonary fibrosis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation.</p> <p>Methods</p> <p>Rats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot.</p> <p>Results</p> <p>AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFβ1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues.</p> <p>Conclusion</p> <p>These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling.</p
    corecore