48 research outputs found

    エストロゲン受容体陽性乳がん細胞において、BIG3は複数のKaryopherin-αを介したPHB2のエストロゲン依存性核移行を阻害する

    Get PDF
    We recently reported that brefeldin A-inhibited guanine nucleotide-exchange protein 3 (BIG3) binds Prohibitin 2 (PHB2) in cytoplasm, thereby causing a loss of function of the PHB2 tumor suppressor in the nuclei of breast cancer cells. However, little is known regarding the mechanism by which BIG3 inhibits the nuclear translocation of PHB2 into breast cancer cells. Here, we report that BIG3 blocks the estrogen (E2)-dependent nuclear import of PHB2 via the karyopherin alpha (KPNA) family in breast cancer cells. We found that overexpressed PHB2 interacted with KPNA1, KPNA5, and KPNA6, thereby leading to the E2-dependent translocation of PHB2 into the nuclei of breast cancer cells. More importantly, knockdown of each endogenous KPNA by siRNA caused a significant inhibition of E2-dependent translocation of PHB2 in BIG3-depleted breast cancer cells, thereby enhancing activation of estrogen receptor alpha (ERα). These data indicated that BIG3 may block the KPNAs (KPNA1, KPNA5, and KPNA6) binding region(s) of PHB2, thereby leading to inhibition of KPNAs-mediated PHB2 nuclear translocation in the presence of E2 in breast cancer cells. Understanding this regulation of PHB2 nuclear import may provide therapeutic strategies for controlling E2/ERα signals in breast cancer cells

    トリプル ネガティブ ニュウガン ニオケル プロテアソーム カンレン インシ PAG1 ニヨル シンキ ゾウショク キコウ ノ カイメイ

    Get PDF
    Triple negative breast cancer (TNBC) is considered to be one of the most aggressive subtypes of all breast cancers. To identify novel potential therapeutic targets and clarify pathophysiological features for TNBC, we conducted Meta-gene profiling analysis based on gene-expression profiling of TNBC cases purified by lasermicrobeam microdissection, and found that proteasome-associated genes (PAGs) were commonly upregulated in various pathways including cell cycle regulation in TNBC. Depletion of PAGs with RNAi caused the upregulation of p27 and p21 proteins in MDA-MB-231 and HCC1937 cells, respectively, resulting in growth inhibition. Interestingly, immunocytochmical staining revealed that PAG1 was observed in the nucleoli and/or cytoplasm (n-PAG1 and c-PAG1) in TNBC cell line and clinical specimens. Immunohistochemical staining of 100 TNBCs showed that high level of n-PAG1 was significantly associated with poor disease free and overall survival of TNBC patients. These results indicate that n-PAG1 plays a critical role in nucleus during cell cycle progression and might be a novel prognostic indicator or an attractive molecular target of TNBC

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    2-Hydroxycyclohexylhydrazines. II. 1

    No full text

    2-Hydroxycyclohexylhydrazines. I. 1

    No full text
    corecore