88 research outputs found

    The risk factor of low back pain by running

    Get PDF

    A lack of classical Cepheids in the inner part of the Galactic disk

    Full text link
    Recent large-scale infrared surveys have been revealing stellar populations in the inner Galaxy seen through strong interstellar extinction in the disk. In particular, classical Cepheids with their period-luminosity and period-age relations are useful tracers of Galactic structure and evolution. Interesting groups of Cepheids reported recently include four Cepheids in the Nuclear Stellar Disk (NSD), about 200 pc around the Galactic Centre, found by Matsunaga et al. and those spread across the inner part of the disk reported by Dekany and collaborators. We here report our discovery of nearly thirty classical Cepheids towards the bulge region, some of which are common with Dekany et al., and discuss the large impact of the reddening correction on distance estimates for these objects. Assuming that the four Cepheids in the NSD are located at the distance of the Galactic Centre and that the near-infrared extinction law, i.e. wavelength dependency of the interstellar extinction, is not systematically different between the NSD and other bulge lines-of-sight, most of the other Cepheids presented here are located significantly further than the Galactic Centre. This suggests a lack of Cepheids in the inner 2.5 kpc region of the Galactic disk except the NSD. Recent radio observations show a similar distribution of star-forming regions.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Cepheids and other short-period variables near the Galactic Centre

    Get PDF
    We report the result of our near-infrared survey of short-period variable stars (P<60d) in a field-of-view of 20'x30' towards the Galactic Centre. Forty-five variables are discovered and we classify the variables based on their light curve shapes and other evidence. In addition to 3 classical Cepheids reported previously, we find 16 type II Cepheids, 24 eclipsing binaries, one pulsating star with P=0.265d (RR Lyr or delta Sct) and one Cepheid-like variable whose nature is uncertain. Eclipsing binaries are separated into the foreground objects and those significantly obscured by interstellar extinction. One of the reddened binaries contains an O-type supergiant and its light curve indicates an eccentric orbit. We discuss the nature and distribution of type II Cepheids as well as the distance to the Galactic Centre based on these Cepheids and other distance indicators. The estimates of R0(GC) we obtained based on photometric data agree with previous results obtained with kinematics of objects around the GC. Furthermore, our result gives a support to the reddening law obtained by Nishiyama and collaborators, A(Ks)/E(H-Ks)=1.44, because a different reddening law would result in a rather different distance estimate.Comment: 13 pages, 10 figures, 7tables, accepted for publication in MNRA

    Shock Excitation in Narrow Line Regions Powered by AGN Outflows

    Full text link
    Outflows in the Active Galactic Nucleus (AGN) are considered to play a key role in the host galaxy evolution through transfer of a large amount of energy. A Narrow Line Region (NLR) in the AGN is composed of ionized gas extending from pc-scales to kpc-scales. It has been suggested that shocks are required for ionization of the NLR gas. If AGN outflows generate such shocks, they will sweep through the NLR and the outflow energy will be transferred into a galaxy-scale region. In order to study contribution of the AGN outflow to the NLR-scale shock, we measure the [\ion{Fe}{2}]λ12570\lambda12570/[\ion{P}{2}]λ11886\lambda11886 line ratio, which is a good tracer of shocks, using near-infrared spectroscopic observations with WINERED (Warm INfrared Echelle spectrograph to Realize Extreme Dispersion and sensitivity) mounted on the New Technology Telescope. Among 13 Seyfert galaxies we observed, the [\ion{Fe}{2}] and [\ion{P}{2}] lines were detected in 12 and 6 targets, respectively. The [\ion{Fe}{2}]/[\ion{P}{2}] ratios in 4 targets were found to be higher than 10, which implies the existence of shocks. We also found that the shock is likely to exist where an ionized outflow, i.e., a blue wing in [\ion{S}{3}]λ9533\lambda9533, is present. Our result implies that the ionized outflow present over a NLR-scale region sweeps through the interstellar medium and generates a shock.Comment: Accepted for ApJ, 20 pages, 11 figure
    corecore