226 research outputs found

    TALE-mediated plant genome visualization

    Get PDF
    Live imaging of the dynamics of nuclear organization provides the opportunity to uncover the mechanisms responsible for four-dimensional genome architecture. Here, we describe the use of fluorescent protein (FP) fusions of transcription activator-like effectors (TALEs) to visualize endogenous genomic sequences in Arabidopsis thaliana. The ability to engineer sequence-specific TALEs permits the investigation of precise genomic sequences. We could detect TALE-FP signals associated with centromeric, telomeric, and rDNA repeats and the signal distribution was consistent with that observed by fluorescent in situ hybridization. TALE-FPs are advantageous because they permit the observation of intact tissues. We used our TALE-FP method to investigate the nuclei of several multicellular plant tissues including roots, hypocotyls, leaves, and flowers. Because TALE-FPs permit live-cell imaging, we successfully observed the temporal dynamics of centromeres and telomeres in plant organs. Fusing TALEs to multimeric FPs enhanced the signal intensity when observing telomeres. We found that the mobility of telomeres was different in subnuclear regions. Transgenic plants stably expressing TALE-FPs will provide new insights into chromatin organization and dynamics in multicellular organisms

    Raman study on the interlayer interactions and the band structure of bilayer graphene synthesized by alcohol chemical vapor deposition

    Get PDF
    We investigated the electronic band structure and interlayer interactions in graphene synthesized by alcohol-chemical vapor deposition (a-CVD) using microprobe Raman spectroscopy and tight-binding band-structure calculations. The number of graphene layers was determined from the spectrally integrated intensity ratios of the G phonon to 2D phonon peaks. We found that the value of the parameter determining interlayer interactions in a-CVD bilayer graphene was less than half that of exfoliated bilayer graphene. The weak interlayer interaction in a-CVD bilayer graphene was attributed to non-AB stacking order

    A New Disorder in UV-Induced Skin Cancer with Defective DNA Repair Distinct from Xeroderma Pigmentosum or Cockayne Syndrome

    Get PDF
    We report the characterization of a Japanese woman who exhibited many freckles and skin cancers in sun-exposed areas, but displayed no photosensitivity. Fibroblasts (KPSX7) derived from this patient showed similar UV sensitivity to that of normal human fibroblasts. The KPSX7 cells showed normal levels of unscheduled DNA synthesis, recovery of RNA synthesis, recovery of replicative DNA synthesis, protein-binding ability to UV-damaged DNA, and post-translational modification of xeroderma pigmentosum (XP) C. These results indicate that the patient had neither XP nor Cockayne syndrome. Although these results suggest that the KPSX7 cells were proficient in nucleotide excision repair activity, host-cell reactivation (HCR) activity of KPSX7 cells was reduced. Furthermore, introduction of UV damage endonuclease into the cells restored repair activity in the HCR assay to almost normal levels. These results indicate that KPSX7 cells are defective for some types of repair activity in UV-damaged DNA. In summary, the patient had a previously unknown disorder related to UV-induced carcinogenesis, with defective DNA repair

    Molecular basis for the dosing time-dependency of anti-allodynic effects of gabapentin in a mouse model of neuropathic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuropathic pain is characterized by hypersensitivity to innocuous stimuli (tactile allodynia) that is nearly always resistant to NSAIDs or even opioids. Gabapentin, a GABA analogue, was originally developed to treat epilepsy. Accumulating clinical evidence supports the effectiveness of this drug for diverse neuropathic pain. In this study, we showed that the anti-allodynic effect of gabapentin was changed by the circadian oscillation in the expression of its target molecule, the calcium channel α2δ-1 subunit.</p> <p>Results</p> <p>Mice were underwent partial sciatic nerve ligation (PSL) to create a model of neuropathic pain. The paw withdrawal threshold (PWT) in PSL mice significantly decreased and fluctuated with a period length about 24 h. The PWT in PSL mice was dose-dependently increased by intraperitoneal injection of gabapentin, but the anti-allodynic effects varied according to its dosing time. The protein levels of α2δ-1 subunit were up-regulated in the DRG of PSL mice, but the protein levels oscillated in a circadian time-dependent manner. The time-dependent oscillation of α2δ-1 subunit protein correlated with fluctuations in the maximal binding capacity of gabapentin. The anti-allodynic effect of gabapentin was attenuated at the times of the day when α2δ-1 subunit protein was abundant.</p> <p>Conclusions</p> <p>These findings suggest that the dosing time-dependent difference in the anti-allodynic effects of gabapentin is attributable to the circadian oscillation of α2δ-1 subunit expression in the DRG and indicate that the optimizing its dosing schedule helps to achieve rational pharmacotherapy for neuropathic pain.</p

    A Retrospective Analysis of Transfusion Management for Obstetric Hemorrhage in a Japanese Obstetric Center

    Get PDF
    Background. Since cryoprecipitate, fibrinogen concentrate, or recombinant activated factor VII is not approved by public medical insurance in Japan, we retrospectively assessed blood product usage in patients with obstetric hemorrhage at our tertiary obstetric center. Material and Methods. 220 patients with obstetric hemorrhagic disorders who underwent blood product transfusion in our institution during a 5-year period were reviewed for the types and volumes of blood products transfused. Results. There was a significant positive correlation (P< 0.001) between the volume of RCC (red blood cell concentrate) transfused and that of FFP (fresh frozen plasma), irrespective of underlying obstetric disorders. The median of FFP to RCC ratio in each patient was 1.3–1.4, when 6 or more units of RCC were transfused. Conclusions. In transfusion for massive obstetric hemorrhage in terms of appropriate supplementation of coagulation factors, the transfusion of RCC : FFP = 1 : 1.3–1.4 may be desirable

    Alveolar Bone Microstructure Surrounding Orthodontic Anchor Screws with Plasma Surface Treatment in Rats

    Get PDF
    A lateral load was applied to anchor screws that had undergone surface treatment, and the structure, cellular dynamics, and quality of the bone surrounding anchor screws were analyzed to investigate the effect of this surface treatment on the peri-implant jawbone. In addition, bone microstructural characteristics were quantitatively evaluated for each site of loading on the bone around the anchor screw. Rats were euthanized after observation on days 3, 5, or 7, and bone quality analyses were performed. Bone–implant contact rate increased more rapidly at an early stage in the treated surface group than in the untreated surface group. Bone lacuna morphometry showed that the measured values adjacent to the screw at the screw neck on the compressed side (A) and at the screw tip on the uncompressed side (D) were significantly lower than those at the screw tip on the compressed side (B) and at the screw neck on the uncompressed side (C). Collagen fiber bundle diameter showed that the measured values adjacent to regions A and D were significantly higher than those at regions B and C. Anchor screw surface activation facilitates initial bone contact of the screw, suggesting that early loading may be possible in clinical practice.Okawa K., Matsunaga S., Kasahara N., et al. Alveolar Bone Microstructure Surrounding Orthodontic Anchor Screws with Plasma Surface Treatment in Rats. Journal of Functional Biomaterials 14, 356 (2023); https://doi.org/10.3390/jfb14070356
    corecore