493 research outputs found
A mechanism for randomness
We investigate explicit functions that can produce truly random numbers. We
use the analytical properties of the explicit functions to show that certain
class of autonomous dynamical systems can generate random dynamics. This
dynamics presents fundamental differences with the known chaotic systems. We
present realphysical systems that can produce this kind of random time-series.
We report theresults of real experiments with nonlinear circuits containing
direct evidence for this new phenomenon. In particular, we show that a
Josephson junction coupled to a chaotic circuit can generate unpredictable
dynamics. Some applications are discussed.Comment: Accepted in Physics Letters A (2002). 11 figures (.eps
Near-field optical power transmission of dipole nano-antennas
Nano-antennas in functional plasmonic applications require high near-field optical power transmission. In this study, a model is developed to compute the near-field optical power transmission in the vicinity of a nano-antenna.
To increase the near-field optical power transmission from a nano-antenna, a tightly focused beam of light is utilized to illuminate a metallic nano-antenna. The modeling and simulation of these structures is performed using 3-D finite element method based full-wave solutions of Maxwell’s equations. Using the optical power transmission model, the interaction of a focused beam of light with plasmonic nanoantennas is investigated. In addition, the tightly focused beam of light is passed through a band-pass filter to identify the effect of various regions of the angular spectrum to the near-field radiation of a dipole nano-antenna. An extensive parametric study is performed to quantify the effects of various parameters on the transmission efficiency of dipole nano-antennas, including length, thickness, width, and the composition of the antenna, as well as the wavelength and half-beam angle of incident light. An optimal dipole nanoantenna geometry is identified based on the parameter studies in this work. In addition, the results of this study show the interaction of the optimized dipole nano-antenna with a magnetic recording medium when it is illuminated with a focused beam of light
Dynamics of barrier penetration in thermal medium: exact result for inverted harmonic oscillator
Time evolution of quantum tunneling is studied when the tunneling system is
immersed in thermal medium. We analyze in detail the behavior of the system
after integrating out the environment. Exact result for the inverted harmonic
oscillator of the tunneling potential is derived and the barrier penetration
factor is explicitly worked out as a function of time. Quantum mechanical
formula without environment is modifed both by the potential renormalization
effect and by a dynamical factor which may appreciably differ from the
previously obtained one in the time range of 1/(curvature at the top of
potential barrier).Comment: 30 pages, LATEX file with 11 PS figure
Chaotic memristor
We suggest and experimentally demonstrate a chaotic memory resistor
(memristor). The core of our approach is to use a resistive system whose
equations of motion for its internal state variables are similar to those
describing a particle in a multi-well potential. Using a memristor emulator,
the chaotic memristor is realized and its chaotic properties are measured. A
Poincar\'{e} plot showing chaos is presented for a simple nonautonomous circuit
involving only a voltage source directly connected in series to a memristor and
a standard resistor. We also explore theoretically some details of this system,
plotting the attractor and calculating Lyapunov exponents. The multi-well
potential used resembles that of many nanoscale memristive devices, suggesting
the possibility of chaotic dynamics in other existing memristive systems.Comment: Applied Physics A (in press
An Exceptional Algebraic Origin of the AdS/CFT Yangian Symmetry
In the su(2|2) spin chain motivated by the AdS/CFT correspondence, a novel
symmetry extending the superalgebra su(2|2) into u(2|2) was found. We pursue
the origin of this symmetry in the exceptional superalgebra d(2,1;epsilon),
which recovers su(2|2) when the parameter epsilon is taken to zero. Especially,
we rederive the Yangian symmetries of the AdS/CFT spin chain using the
exceptional superalgebra and find that the epsilon-correction corresponds to
the novel symmetry. Also, we reproduce the non-canonical classical r-matrix of
the AdS/CFT spin chain expressed with this symmetry from the canonical one of
the exceptional algebra.Comment: 20 pages, 3 figures, v3: minor changes and references adde
Breakup reaction models for two- and three-cluster projectiles
Breakup reactions are one of the main tools for the study of exotic nuclei,
and in particular of their continuum. In order to get valuable information from
measurements, a precise reaction model coupled to a fair description of the
projectile is needed. We assume that the projectile initially possesses a
cluster structure, which is revealed by the dissociation process. This
structure is described by a few-body Hamiltonian involving effective forces
between the clusters. Within this assumption, we review various reaction
models. In semiclassical models, the projectile-target relative motion is
described by a classical trajectory and the reaction properties are deduced by
solving a time-dependent Schroedinger equation. We then describe the principle
and variants of the eikonal approximation: the dynamical eikonal approximation,
the standard eikonal approximation, and a corrected version avoiding Coulomb
divergence. Finally, we present the continuum-discretized coupled-channel
method (CDCC), in which the Schroedinger equation is solved with the projectile
continuum approximated by square-integrable states. These models are first
illustrated by applications to two-cluster projectiles for studies of nuclei
far from stability and of reactions useful in astrophysics. Recent extensions
to three-cluster projectiles, like two-neutron halo nuclei, are then presented
and discussed. We end this review with some views of the future in
breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be
published as a volume of "Lecture Notes in Physics" (Springer
Antiferromagnetism and single-particle properties in the two-dimensional half-filled Hubbard model: a non-linear sigma model approach
We describe a low-temperature approach to the two-dimensional half-filled
Hubbard model which allows us to study both antiferromagnetism and
single-particle properties. This approach ignores amplitude fluctuations of the
antiferromagnetic (AF) order parameter and is valid below a crossover
temperature which marks the onset of AF short-range order. Directional
fluctuations (spin waves) are described by a non-linear sigma model
(NLM) that we derive from the Hubbard model. At zero temperature and
weak coupling, our results are typical of a Slater antiferromagnet. The AF gap
is exponentially small; there are well-defined Bogoliubov quasi-particles
(QP's) (carrying most of the spectral weight) coexisting with a high-energy
incoherent excitation background. As increases, the Slater antiferromagnet
progressively becomes a Mott-Heisenberg antiferromagnet. The Bogoliubov bands
evolve into Mott-Hubbard bands separated by a large AF gap. A significant
fraction of spectral weight is transferred from the Bogoliubov QP's to
incoherent excitations. At finite temperature, there is a metal-insulator
transition between a pseudogap phase at weak coupling and a Mott-Hubbard
insulator at strong coupling. Finally, we point out that our results
straightforwardly translate to the half-filled attractive Hubbard model, where
the charge and pairing fluctuations combine to
form an order parameter with SO(3) symmetry.Comment: Revtex4, 19 pages, 14 figures; (v2) final version as publishe
Novel Approach to Confront Electroweak Data and Theory
A novel approach to study electroweak physics at one-loop level in generic
theories is introduced. It separates the 1-loop
corrections into two pieces: process specific ones from vertex and box
contributions, and universal ones from contributions to the gauge boson
propagators. The latter are parametrized in terms of four effective form
factors , , and corresponding to the , , and
propagators. Under the assumption that only the Standard Model contributes to
the process specific corrections, the magnitudes of the four form factors are
determined at and at q^2=\mmz by fitting to all available precision
experiments. These values are then compared systematically with predictions of
theories. In all fits \alpha_s(\mz) and
\bar{\alpha}(\mmz) are treated as external parameters in order to keep the
interpretation as flexible as possible. The treatment of the electroweak data
is presented in detail together with the relevant theoretical formulae used to
interpret the data. No deviation from the Standard Model has been identified.
Ranges of the top quark and Higgs boson masses are derived as functions of
\alpha_s(\mz) and \bar{\alpha}(\mmz). Also discussed are consequences of
the recent precision measurement of the left-right asymmetry at SLC as well as
the impact of a top quark mass and an improved mass measurement.Comment: 123 pages, LaTeX (33 figures available via anonymous ftp),
KEK-TH-375, KEK preprint 93-159, KANAZAWA-94-19, DESY 94-002, YUMS 94-22,
SNUTP 94-82, to be published in Z.Phys.
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
- …