12 research outputs found

    Socioeconomic Appraisal of Waste Recycling : an lnput-Output Approach

    Get PDF

    Trend Prediction Based on Multi-Modal Affective Analysis from Social Networking Posts

    Get PDF
    This paper propose a method to predict the stage of buzz-trend generation by analyzing the emotional information posted on social networking services for multimodal information, such as posted text and attached images, based on the content of the posts. The proposed method can analyze the diffusion scale from various angles, using only the information at the time of posting, when predicting in advance and the information of time error, when used for posterior analysis. Specifically, tweets and reply tweets were converted into vectors using the BERT general-purpose language model that was trained in advance, and the attached images were converted into feature vectors using a trained neural network model for image recognition. In addition, to analyze the emotional information of the posted content, we used a proprietary emotional analysis model to estimate emotions from tweets, reply tweets, and image features, which were then added to the input as emotional features. The results of the evaluation experiments showed that the proposed method, which added linguistic features (BERT vectors) and image features to tweets, achieved higher performance than the method using only a single feature. Although we could not observe the effectiveness of the emotional features, the more emotions a tweet and its reply match had, the more empathy action occurred and the larger the like and RT values tended to be, which could ultimately increase the likelihood of a tweet going viral

    Buzz Tweet Classification Based on Text and Image Features of Tweets Using Multi-Task Learning

    Get PDF
    This study investigates social media trends and proposes a buzz tweet classification method to explore the factors causing the buzz phenomenon on Twitter. It is difficult to identify the causes of the buzz phenomenon based solely on texts posted on Twitter. It is expected that by limiting the tweets to those with attached images and using the characteristics of the images and the relationships between the text and images, a more detailed analysis than that of with text-only tweets can be conducted. Therefore, an analysis method was devised based on a multi-task neural network that uses both the features extracted from the image and text as input and the buzz class (buzz/non-buzz) and the number of “likes (favorites)” and “retweets (RTs)” as output. The predictions made using a single feature of the text and image were compared with the predictions using a combination of multiple features. The differences between buzz and non-buzz features were analyzed based on the cosine similarity between the text and the image. The buzz class was correctly identified with a correctness rate of approximately 80% for all combinations of image and text features, with the combination of BERT and VGG16 providing the highest correctness rate

    Buzz Tweet Classification Based on Text and Image Features of Tweets Using Multi-Task Learning

    No full text
    This study investigates social media trends and proposes a buzz tweet classification method to explore the factors causing the buzz phenomenon on Twitter. It is difficult to identify the causes of the buzz phenomenon based solely on texts posted on Twitter. It is expected that by limiting the tweets to those with attached images and using the characteristics of the images and the relationships between the text and images, a more detailed analysis than that of with text-only tweets can be conducted. Therefore, an analysis method was devised based on a multi-task neural network that uses both the features extracted from the image and text as input and the buzz class (buzz/non-buzz) and the number of “likes (favorites)” and “retweets (RTs)” as output. The predictions made using a single feature of the text and image were compared with the predictions using a combination of multiple features. The differences between buzz and non-buzz features were analyzed based on the cosine similarity between the text and the image. The buzz class was correctly identified with a correctness rate of approximately 80% for all combinations of image and text features, with the combination of BERT and VGG16 providing the highest correctness rate

    Trend Prediction Based on Multi-Modal Affective Analysis from Social Networking Posts

    No full text
    This paper propose a method to predict the stage of buzz-trend generation by analyzing the emotional information posted on social networking services for multimodal information, such as posted text and attached images, based on the content of the posts. The proposed method can analyze the diffusion scale from various angles, using only the information at the time of posting, when predicting in advance and the information of time error, when used for posterior analysis. Specifically, tweets and reply tweets were converted into vectors using the BERT general-purpose language model that was trained in advance, and the attached images were converted into feature vectors using a trained neural network model for image recognition. In addition, to analyze the emotional information of the posted content, we used a proprietary emotional analysis model to estimate emotions from tweets, reply tweets, and image features, which were then added to the input as emotional features. The results of the evaluation experiments showed that the proposed method, which added linguistic features (BERT vectors) and image features to tweets, achieved higher performance than the method using only a single feature. Although we could not observe the effectiveness of the emotional features, the more emotions a tweet and its reply match had, the more empathy action occurred and the larger the like and RT values tended to be, which could ultimately increase the likelihood of a tweet going viral

    Trend Prediction Based on Multi-Modal Affective Analysis from Social Networking Posts

    No full text
    This paper propose a method to predict the stage of buzz-trend generation by analyzing the emotional information posted on social networking services for multimodal information, such as posted text and attached images, based on the content of the posts. The proposed method can analyze the diffusion scale from various angles, using only the information at the time of posting, when predicting in advance and the information of time error, when used for posterior analysis. Specifically, tweets and reply tweets were converted into vectors using the BERT general-purpose language model that was trained in advance, and the attached images were converted into feature vectors using a trained neural network model for image recognition. In addition, to analyze the emotional information of the posted content, we used a proprietary emotional analysis model to estimate emotions from tweets, reply tweets, and image features, which were then added to the input as emotional features. The results of the evaluation experiments showed that the proposed method, which added linguistic features (BERT vectors) and image features to tweets, achieved higher performance than the method using only a single feature. Although we could not observe the effectiveness of the emotional features, the more emotions a tweet and its reply match had, the more empathy action occurred and the larger the like and RT values tended to be, which could ultimately increase the likelihood of a tweet going viral

    Empirical project monitor: A tool for mining multiple project data

    No full text
    Project management for effective software process improvement must be achieved based on quantitative data. However, because data collection for measurement requires high costs and collaboration with developers, it is difficult to collect coherent, quantitative data continuously and to utilize the data for practicing software process improvement. In this paper, we describe Empirical Project Monitor (EPM) which automatically collects and measures data from three kinds of repositories in widely used software development support systems such as configuration management systems, mailing list managers and issue tracking systems. Providing integrated measurement results graphically, EPM helps developers/managers keep projects under control in real time.

    Empirical project monitor: Automatic data collection and analysis toward software process improvement

    No full text
    In recent years, improvement of software process is increasingly gaining attention. However, its prac-tice is very difficult because coherent data collec-tion and utilization of the collected data require considerable experience with software process im-provement. In this paper, we describe our empiri-cal approach to software engineering and introduce Empirical Project Monitor (EPM). Collecting data on development activities from common software development support tools such as configuration management systems and mailing list managers, EPM analyzes the stored data automatically and provides graphical results. EPM facilitates coher-ent data collection and data analysis which are dif-ficult tasks in practice.
    corecore