3 research outputs found

    Striped antiferromagnetism and electronic structures of SrFeAsF and their implications

    Full text link
    We investigate structural, magnetic, and electronic properties of SrFeAsF as a new parent for superconductors using state-of-the-art density-functional theory method. Calculated results show that striped antiferromagnetic order is the magnetic ground state in the Fe layer and interlayer magnetic interaction is tiny. Calculated As and Sr positions are in agreement with experiment. There are only two uniaxially-dispersed bands near the Fermi level. The valent charge is mainly in the Fe and F layers, and the magnetic moment is confined to the Fe atoms. Inter-Fe-spin couplings is due to superexchange through As atoms. These are useful to understanding the SrFeAsF and should have helpful implications to doped samples.Comment: 5 pages with figures include

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials
    corecore