19 research outputs found

    Measurement of low-energy antiproton detection efficiency in BESS below 1 GeV

    Full text link
    An accelerator experiment was performed using a low-energy antiproton beam to measure antiproton detection efficiency of BESS, a balloon-borne spectrometer with a superconducting solenoid. Measured efficiencies showed good agreement with calculated ones derived from the BESS Monte Carlo simulation based on GEANT/GHEISHA. With detailed verification of the BESS simulation, the relative systematic error of detection efficiency derived from the BESS simulation has been determined to be ±\pm5%, compared with the previous estimation of ±\pm15% which was the dominant uncertainty for measurements of cosmic-ray antiproton flux.Comment: 13 pages, 7 figure

    Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer

    Get PDF
    We report cosmic-ray proton and helium spectra in energy ranges of 1 to 120 GeV and 1 to 54 GeV/nucleon, respectively, measured by a balloon flight of the BESS spectrometer in 1998. The magnetic-rigidity of the cosmic-rays was reliably determined by highly precise measurement of the circular track in a uniform solenoidal magnetic field of 1 Tesla. Those spectra were determined within overall uncertainties of +-5 % for protons and +- 10 % for helium nuclei including statistical and systematic errors.Comment: 12 pages, 4 figure

    Measurements of Cosmic-ray Low-energy Antiproton and Proton Spectra in a Transient Period of the Solar Field Reversal

    Get PDF
    The energy spectra of cosmic-ray low-energy antiprotons and protons have been measured by BESS in 1999 and 2000, during a period covering the solar magnetic field reversal. Based on these measurements, a sudden increase of the antiproton to proton flux ratio following the solar magnetic field reversal was observed, and it generally agrees with a drift model of the solar modulation.Comment: 4 pages, 4 figures, revised version accepted for publication in Phys. Rev. Let

    Anomaly detection using Unsupervised Machine Learning for Grid computing site operation

    Get PDF
    A Grid computing site is composed of various services including Grid middleware, such as Computing Element and Storage Element. Text logs produced by the services provide useful information for understanding the status of the services. However, it is a time-consuming task for site administrators to monitor and analyze the service logs every day. Therefore, a support framework has been developed to ease the site administrator’s work. The framework detects anomaly logs using Machine Learning techniques and alerts site administrators. The framework has been examined using real service logs at the Tokyo Tier2 site, which is one of the Worldwide LHC Computing Grid sites. In this paper, a method of the anomaly detection in the framework and its performances at the Tokyo Tier2 site are reported

    Anomaly detection using Unsupervised Machine Learning for Grid computing site operation

    No full text
    A Grid computing site is composed of various services including Grid middleware, such as Computing Element and Storage Element. Text logs produced by the services provide useful information for understanding the status of the services. However, it is a time-consuming task for site administrators to monitor and analyze the service logs every day. Therefore, a support framework has been developed to ease the site administrator’s work. The framework detects anomaly logs using Machine Learning techniques and alerts site administrators. The framework has been examined using real service logs at the Tokyo Tier2 site, which is one of the Worldwide LHC Computing Grid sites. In this paper, a method of the anomaly detection in the framework and its performances at the Tokyo Tier2 site are reported
    corecore