46 research outputs found

    Evaluation of prognostic significance of granulocyte-related factors in cancer patients undergoing personalized peptide vaccination

    Get PDF
    Since cancer vaccines do not always elicit beneficial effects in treated patients, identification of biomarkers for predicting clinical outcomes would be highly desirable. We previously reported that abnormal granulocytes present in peripheral blood mononuclear cells (PBMC) may contribute to poor prognosis in advanced prostate cancer patients receiving personalized peptide vaccination (PPV). In the current study, we examined whether soluble factors derived from granulocytes, such as matrix metalloproteinase 9 (MMP-9), myeloperoxidase (MPO), and arginase 1 (ARG1), and inhibitory cytokine TGFβ in pre-vaccination plasma were useful for predicting prognosis after PPV in advanced cancer patients. In biliary tract cancer (n=25), multivariate Cox regression analysis demonstrated that patients with higher plasma MMP-9 levels had a significantly worse overall survival (OS) [hazard ratio (HR) = 4.637, 95% confidence interval (CI) = 1.670 - 12.877, P = 0.003], whereas MPO, ARG1, or TGFβ levels were not correlated with OS. Similarly, patients with higher MMP-9 levels showed worse prognosis than those with lower MMP-9 levels in other types of advanced cancers, including non-small cell lung cancer (n=32, P = 0.037 by log-rank test), and pancreatic cancer (n=41, P = 0.042 by log-rank test). Taken together, plasma MMP-9 levels before vaccination might be potentially useful as a biomarker for selecting advanced cancer patients who would benefit from PPV.This study was supported by a research program of the Project for Development of Innovative Research on Cancer Therapeutics (P-Direct), Ministry of Education, Culture, Sports, Science and Technology of Japan; a research program of the Regional Innovation Cluster Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan; and Kurozumi Medical Foundation

    Immunological evaluation of peptide vaccination for cancer patients with the HLA-A26 allele

    Get PDF
    To develop a peptide vaccine for cancer patients with the HLA-A26 allele, which is a minor population worldwide, we investigated the immunological responses of HLA-A26+ ⁄ A26+ cancer patients to four different CTL epitope peptides under personalized peptide vaccine regimens. In personalized peptide vaccine regimens, two to four peptides showing positive peptide-specific IgG responses in pre-vaccination plasma were selected from the four peptide candidates applicable for HLA-A26+ ⁄ A26+ cancer patients and administered s.c. Peptide-specific CTL and IgG responses along with cytokine levels were measured before and after vaccination. Cell surface markers in PBMCs and plasma cytokine levels were also measured. In this study, 21 advanced cancer patients, including seven lung, three breast, two pancreas, and two colon cancer patients, were enrolled. Their HLAA26 genotypes were HLA-A26:01 (n = 24), HLA-A26:03 (n = 10), and HLA-A26:02 (n = 8). One, 14, and 6 patients received two, three, and four peptides, respectively. Grade 1 or 2 skin reactions at the injection sites were observed in the majority of patients, but no severe adverse events related to the vaccination were observed. Peptide-specific CTL responses were augmented in 39% or 22% of patients after one or two cycles of vaccination, respectively. Notably, peptide-specific IgG were augmented in 63% or 100% of patients after one or two cycles of vaccination, respectively. Personalized peptide vaccines with these four CTL epitope peptides could be feasible for HLA-A26+ advanced cancer patients because of their safety and higher rates of immunological responses.This study was supported in part by the Japan Agency for Medical Research and development, AMED, a research program of the Regional Innovation Cluster Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and a grant from the Sendai Kousei Hospital

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients

    Immunotherapy in gastric cancer

    No full text

    Significance of Cancer-Associated Fibroblasts in the Interactions of Cancer Cells with the Tumor Microenvironment of Heterogeneous Tumor Tissue

    No full text
    The tumor microenvironment (TME) plays a key role in cancer development and progression, as well as contributes to the therapeutic resistance and metastasis of cancer cells. The TME is heterogeneous and consists of multiple cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, and immune cells, as well as various extracellular components. Recent studies have revealed cross talk between cancer cells and CAFs as well as between CAFs and other TME cells, including immune cells. Signaling by transforming growth factor-β, derived from CAFs, has recently been shown to induce remodeling of tumor tissue, including the promotion of angiogenesis and immune cell recruitment. Immunocompetent mouse cancer models that recapitulate interactions of cancer cells with the TME have provided insight into the TME network and support the development of new anticancer therapeutic strategies. Recent studies based on such models have revealed that the antitumor action of molecularly targeted agents is mediated in part by effects on the tumor immune environment. In this review, we focus on cancer cell–TME interactions in heterogeneous tumor tissue, and we provide an overview of the basis for anticancer therapeutic strategies that target the TME, including immunotherapy

    Humoral immune responses to EGFR-derived peptides predict progression-free and overall survival of non-small cell lung cancer patients receiving gefitinib.

    Get PDF
    Somatic mutations in the epidermal growth factor receptor (EGFR) gene are associated with clinical response to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, in patients with non-small cell lung cancer (NSCLC). However, humoral immune responses to EGFR in NSCLC patients have not been well studied. In this study, we investigated the clinical significance of immunoglobulin G (IgG) responses to EGFR-derived peptides in NSCLC patients receiving gefitinib. Plasma IgG titers to each of 60 different EGFR-derived 20-mer peptides were measured by the Luminex system in 42 NSCLC patients receiving gefitinib therapy. The relationships between the peptide-specific IgG titers and presence of EGFR mutations or patient survival were evaluated statistically. IgG titers against the egfr_481-500, egfr_721-740, and egfr_741-760 peptides were significantly higher in patients with exon 21 mutation than in those without it. On the other hand, IgG titers against the egfr_841-860 and egfr_1001-1020 peptides were significantly lower and higher, respectively, in patients with deletion in exon 19. Multivariate Cox regression analysis showed that IgG responses to egfr_41_ 60, egfr_61_80 and egfr_481_500 were significantly prognostic for progression-free survival independent of other clinicopathological characteristics, whereas those to the egfr_41_60 and egfr_481_500 peptides were significantly prognostic for overall survival. Detection of IgG responses to EGFR-derived peptides may be a promising method for prognostication of NSCLC patients receiving gefitinib. Our results may provide new insight for better understanding of humoral responses to EGFR in NSCLC patients
    corecore