2,531 research outputs found

    Diffuse Lyman Alpha Haloes around Lyman Alpha Emitters at z=3: Do Dark Matter Distributions Determine the Lyman Alpha Spatial Extents?

    Get PDF
    Using stacks of Ly-a images of 2128 Ly-a emitters (LAEs) and 24 protocluster UV-selected galaxies (LBGs) at z=3.1, we examine the surface brightness profiles of Ly-a haloes around high-z galaxies as a function of environment and UV luminosity. We find that the slopes of the Ly-a radial profiles become flatter as the Mpc-scale LAE surface densities increase, but they are almost independent of the central UV luminosities. The characteristic exponential scale lengths of the Ly-a haloes appear to be proportional to the square of the LAE surface densities (r(Lya) \propto Sigma(LAE)^2). Including the diffuse, extended Ly-a haloes, the rest-frame Ly-a equivalent width of the LAEs in the densest regions approaches EW_0(Lya) ~ 200 A, the maximum value expected for young (< 10^7 yr) galaxies. This suggests that Ly-a photons formed via shock compression by gas outflows or cooling radiation by gravitational gas inflows may partly contribute to illuminate the Ly-a haloes; however, most of their Ly-a luminosity can be explained by photo-ionisation by ionising photons or scattering of Ly-a photons produced in HII regions in and around the central galaxies. Regardless of the source of Ly-a photons, if the Ly-a haloes trace the overall gaseous structure following the dark matter distributions, it is not surprising that the Ly-a spatial extents depend more strongly on the surrounding Mpc-scale environment than on the activities of the central galaxies.Comment: 7 pages, 4 figures, accepted for publication in MNRA

    Characterization of the distribution of the Lly\alpha emitters in the 53W002 field at z = 2.4

    Full text link
    We present the results of our wide-field narrow band imaging of the field around the radio galaxy 53W002 at z = 2.390 with Subaru/Suprime-Cam. A custom made filter NB413 centered at 4140 \AA\ with the width of 83 \AA\ is used to observe the 31' x 24' area around the radio galaxy. We detected 204 Ly\alpha emitters (LAEs) at z = 2.4 with a rest frame equivalent width larger than 25 \AA\ to the depth of 26 AB mag (in NB413). The entire LAE population in the 53W002 field has an average number density and distributions of equivalent width and size that are similar to those of other fields at z ~ 2. We identify a significant high density region (53W002F-HDR) that spreads over ~ 5' x 4' near 53W002 where the LAE number density is nearly four times as large as the average of the entire field. Using the probability distribution function of density fluctuation, we evaluate the rareness probability of the 53W002F-HDR to be 0.9^{+2.4}_{-0.62}%, which corresponds to a moderately rich structure. No notable environmental dependency at the comoving scale of 10 Mpc is found for the distributions of the Ly\alpha equivalent width and luminosity in the field. We also detected 4 Ly\alpha blobs (LABs), one of which is newly discovered. They are all found to be located in the rims of high density regions. The biased location and unique morphologies in Ly\alpha suggest that galaxy interaction play a key role in their formation.Comment: 26 pages, 12 figure

    Neutron-scattering study of spin correlations in La1.94-xSrxCe0.06CuO4

    Full text link
    We performed a neutron-scattering experiment to investigate the effect of distortion of CuO2 planes on the low-energy spin correlation of La1.94-xSrxCe0.06CuO4 (LSCCO). Due to the carrier-compensation effect by co-doping of Sr and Ce, LSCCO has a smaller orthorhombic lattice distortion compared to La2-xSrxCuO4 (LSCO) with comparable hole concentration p. A clear gap with the edge-energy of 6~7 meV was observed in the energy spectrum of local dynamical susceptibility c"(w) for both x=0.18 (p~0.14) and x=0.24 (p~0.20) samples as observed for optimally-doped LSCO (x=0.15~0.18). For the x=0.14 (p~0.10) sample, in addition to the gap-like structure in c"(w) we observed a low-energy component within the gap which develops below 2~3meV with decreasing the energy. The low-energy component possibly coincides with the static magnetic correlation observed in this sample. These results are discussed from a view point of relationship between the stability of low-energy spin fluctuations and the distortion of CuO2 planes.Comment: 4 pages, 3 figures, proceeding for SNS2007 conferenc
    corecore