13,357 research outputs found
Remote Inflation: Hybrid-like inflation without hybrid-type potential
A new scenario of hybrid-like inflation is considered without using
hybrid-type potential. Radiation raised continuously by a dissipating inflaton
field keeps symmetry restoration in a remote sector, and the false-vacuum
energy of the remote sector dominates the energy density during inflation.
Remote inflation is terminated when the temperature reaches the critical
temperature, or when the slow-roll condition is violated. Without introducing a
complex form of couplings, inflaton field may either roll-in (like a standard
hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential
inflation) on arbitrary inflaton potential. Significant signatures of remote
inflation can be observed in the spectrum caused by (1) the inhomogeneous phase
transition in the remote sector, or (2) a successive phase transition in the
remote sector. Remote inflation can predict strong amplification or suppression
of small-scale perturbations without introducing multiple inflation. Since the
inflaton may have a run-away potential, it is also possible to identify the
inflaton with quintessence, without introducing additional mechanisms. Even if
the false-vacuum energy is not dominated by the remote sector, the phase
transition in the remote sector is possible during warm inflation, which may
cause significant amplification/suppression of the curvature perturbations.Comment: 28 pages, 1 figure, fixed references, accepted for publication in
JCA
Curvaton paradigm can accommodate multiple low inflation scales
Recent arguments show that some curvaton field may generate the cosmological
curvature perturbation. As the curvaton is independent of the inflaton field,
there is a hope that the fine-tunings of inflation models can be cured by the
curvaton scenario. More recently, however, D.H.Lyth discussed that there is a
strong bound for the Hubble parameter during inflation even if one assumes the
curvaton scenario. Although the most serious constraint was evaded, the bound
seems rather crucial for many models of a low inflation scale. In this paper we
try to remove this constraint. We show that the bound is drastically modified
if there were multiple stages of inflation.Comment: 9pages, no figure, references added, final versio
Tadpole Method and Supersymmetric O(N) Sigma Model
We examine the phase structures of the supersymmetric O(N) sigma model in two
and three dimensions by using the tadpole method. Using this simple method, the
calculation is largely simplified and the characteristics of this theory become
clear. We also examine the problem of the fictitious negative energy state.Comment: Plain Latex(12pages), No figur
Single-crystal growth and dependences on the hole concentration and magnetic field of the magnetic ground state in the edge-sharing CuO chain system CaYCuO
We have succeeded in growing large-size single-crystals of
CaYCuO with and measured the
magnetic susceptibility, specific heat and magnetization curve, in order to
study the magnetic ground state in the edge-sharing CuO chain as a function
of hole concentration and magnetic field. In , it has been
found that an antiferromagnetically ordered phase with the magnetic easy axis
along the b-axis is stabilized and that a spin-flop transition occurs by the
application of magnetic fields parallel to the b-axis. The antiferromagnetic
transition temperature decreases with increasing and disappears around 1.4. Alternatively, a spin-glass phase appears around . At where the hole concentration is 1/3 per Cu, it appears that a
spin-gap state is formed owing to the formation of spin-singlet pairs. No sign
of the coexistence of an antiferromagnetically ordered state and a spin-gap one
suggested in CaCuO has been found in
CaYCuO.Comment: 13 pages, 12 figures, 1 tabl
Elliptic Inflation: Generating the curvature perturbation without slow-roll
There are many inflationary models in which inflaton field does not satisfy
the slow-roll condition. However, in such models, it is always difficult to
generate the curvature perturbation during inflation. Thus, to generate the
curvature perturbation, one must introduce another component to the theory. To
cite a case, curvatons may generate dominant part of the curvature perturbation
after inflation. However, we have a question whether it is unrealistic to
consider the generation of the curvature perturbation during inflation without
slow-roll. Assuming multi-field inflation, we encounter the generation of the
curvature perturbation during inflation without slow-roll. The potential along
equipotential surface is flat by definition and thus we do not have to worry
about symmetry. We also discuss about KKLT models, in which corrections lifting
the inflationary direction may not become a serious problem if there is a
symmetry enhancement at the tip (not at the moving brane) of the inflationary
throat.Comment: 27pages, 8figures, to appear in JCA
Primordial black holes from cosmic necklaces
Cosmic necklaces are hybrid topological defects consisting of monopoles and
strings. We argue that primordial black holes(PBHs) may have formed from loops
of the necklaces, if there exist stable winding states, such as coils and
cycloops. Unlike the standard scenario of PBH formation from string loops, in
which the kinetic energy plays important role when strings collapse into black
holes, the PBH formation may occur in our scenario after necklaces have
dissipated their kinetic energy. Then, the significant difference appears in
the production ratio. In the standard scenario, the production ratio
becomes a tiny fraction , however it becomes in our
case. On the other hand, the typical mass of the PBHs is much smaller than the
standard scenario, if they are produced in the same epoch. As the two
mechanisms may work at the same time, the necklaces may have more than one
channel of the gravitational collapse. Although the result obtained in this
paper depends on the evolution of the dimensionless parameter , the
existence of the winding state could be a serious problem in some cases. Since
the existence of the winding state in brane models is due to the existence of a
non-tivial circle in the compactified space, the PBH formation can be used to
probe the structure of the compactified space. Black holes produced by this
mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for
publication in JHE
Dark matter production from cosmic necklaces
Cosmic strings have gained a great interest, since they are formed in a large
class of brane inflationary models. The most interesting story is that cosmic
strings in brane models are distinguished in future cosmological observations.
If the strings in brane models are branes or superstrings that can move along
compactified space, and also if there are degenerated vacua along the
compactified space, kinks interpolate between degenerated vacua become
``beads'' on the strings. In this case, strings turn into necklaces. In the
case that the compact manifold in not simply connected, a string loop that
winds around a nontrivial circle is stable due to the topological reason. Since
the existence of the (quasi-)degenerated vacua and the nontrivial circle is a
common feature of the brane models, it is important to study cosmological
constraints on the cosmic necklaces and the stable winding states. In this
paper, we consider dark matter production from loops of the cosmic necklaces.
Our result suggests that necklaces can put stringent bound on certain kinds of
brane models.Comment: 27 pages, 5 figures, added many comments and 3 figures, accepted for
publication in JCA
- âŠ