185 research outputs found
Successful Treatment of Fetal Intraperitoneal Administration of Immunoglobulin in a Case of Fetal Hemolytic Anemia with 131,072-Fold Anti-E Alloimmunization
Object. We present here the case of severe fetal anemia caused by anti-E antibody positive, which showed a favorable course only with fetal intraperitoneal administration of immunoglobulin. Case. The mother was 31 years old, blood type B Rh : CCDee, gravida 1, with no history of transfusion. Anti-E antibody was detected in the maternal cross-match test at the 18th gestational week. In percutaneous umbilical blood sampling, the umbilical blood hemoglobin level was 9.1 g/dL and the result of the direct Coombs' test was positive at the 26th gestational week. Immunoglobulin injection into fetal abdominal cavity (IFAC) was administered a total 7 times. During the pregnancy, the indirect Coombs' test showed a 131,072-fold increase. Conclusion. In this case, IFAC to block the reticuloendothelial system Fc receptor was successful. This procedure is promising as one of the treatment options for blood group incompatible pregnancy
Generation of monkey iPS cell-derived cartilage lacking MHC class I molecules on the cell surface
Multiple immune reactions when transplanting cartilage into monkeys. 京都大学プレスリリース. 2021-07-07.Due to the poor capacity for articular cartilage to regenerate, its damage tends to result in progressively degenerating conditions such as osteoarthritis. To repair the damage, the transplantation of allogeneic human induced pluripotent stem cell (iPSC)-derived cartilage is being considered. However, although allogeneic cartilage transplantation is effective, immunological reactions can occur. One hypothetical solution is to delete the expression of MHC class I molecules in order to reduce the immunological reactions. For this purpose, we deleted the β2 microglobulin (B2M) gene in a cynomolgus monkey (crab-eating monkey (Macaca fascicularis)) iPS cells (cyiPSCs) to obtain B2M⁻/⁻ cyiPSCs using the CRISPR/Cas9 system. Western blot analysis confirmed B2M⁻/⁻ cyiPSCs lacked B2M protein, which is necessary for MHC class I molecules to be transported to and expressed on the cell surface by forming multimers with B2M. Flow cytometry analysis revealed no B2M⁻/⁻ cyiPSCs expressed MHC class I molecules on their surface. The transplantation of B2M⁻/⁻ cyiPSCs in immunodeficient mice resulted in teratoma that contained cartilage, indicating that the lack of MHC class I molecules on the cell surface affects neither the pluripotency nor the chondrogenic differentiation capacity of cyiPSCs. By modifying the chondrogenic differentiation protocol for human iPSCs, we succeeded at differentiating B2M⁺/⁺ and B2M⁻/⁻ cyiPSCs toward chondrocytes followed by cartilage formation in vitro, as indicated by histological analysis showing that B2M⁺/⁺ and B2M⁻/⁻ cyiPSC-derived cartilage were positively stained with safranin O and expressed type II collagen. Flow cytometry analysis confirmed that MHC class I molecules were not expressed on the cell surface of B2M⁻/⁻ chondrocytes isolated from B2M⁻/⁻ cyiPSC-derived cartilage. An in vitro mixed lymphocyte reaction assay showed that neither B2M⁺/⁺ nor B2M⁻/⁻ cyiPSC-derived cartilage cells stimulated the proliferation of allogeneic peripheral blood mononuclear cells. On the other hand, osteochondral defects in monkey knee joints that received allogeneic transplantations of cyiPSC-derived cartilage showed an accumulation of leukocytes with more natural killer (NK) cells around B2M⁻/⁻ cyiPSC-derived cartilage than B2M⁺/⁺ cartilage, suggesting complex mechanisms in the immune reaction of allogeneic cartilage transplanted in osteochondral defects in vivo
Generation of Monkey Induced Pluripotent Stem Cell-Derived Cartilage Lacking Major Histocompatibility Complex Class I Molecules on the Cell Surface
Due to the poor capacity for articular cartilage to regenerate, its damage tends to result in progressively degenerating conditions such as osteoarthritis. To repair the damage, the transplantation of allogeneic human induced pluripotent stem cell (iPSC)-derived cartilage is being considered. However, although allogeneic cartilage transplantation is effective, immunological reactions can occur. One hypothetical solution is to delete the expression of major histocompatibility complex (MHC) class I molecules to reduce the immunological reactions. For this purpose, we deleted the β2 microglobulin (B2M) gene in a cynomolgus monkey (crab-eating monkey [Macaca fascicularis]) iPS cells (cyiPSCs) to obtain B2M−/− cyiPSCs using the CRISPR/Cas9 system. Western blot analysis confirmed B2M−/− cyiPSCs lacked B2M protein, which is necessary for MHC class I molecules to be transported to and expressed on the cell surface by forming multimers with B2M. Flow cytometry analysis revealed no B2M−/− cyiPSCs expressed MHC class I molecules on their surface. The transplantation of B2M−/− cyiPSCs in immunodeficient mice resulted in teratoma that contained cartilage, indicating that the lack of MHC class I molecules on the cell surface affects neither the pluripotency nor the chondrogenic differentiation capacity of cyiPSCs. By modifying the chondrogenic differentiation protocol for human iPSCs, we succeeded at differentiating B2M+/+ and B2M−/− cyiPSCs toward chondrocytes followed by cartilage formation in vitro, as indicated by histological analysis showing that B2M+/+ and B2M−/− cyiPSC-derived cartilage were positively stained with safranin O and expressed type II collagen. Flow cytometry analysis confirmed that MHC class I molecules were not expressed on the cell surface of B2M−/− chondrocytes isolated from B2M−/− cyiPSC-derived cartilage. An in vitro mixed lymphocyte reaction assay showed that neither B2M+/+ nor B2M−/− cyiPSC-derived cartilage cells stimulated the proliferation of allogeneic peripheral blood mononuclear cells. On the contrary, osteochondral defects in monkey knee joints that received allogeneic transplantations of cyiPSC-derived cartilage showed an accumulation of leukocytes with more natural killer cells around B2M−/− cyiPSC-derived cartilage than B2M+/+ cartilage, suggesting complex mechanisms in the immune reaction of allogeneic cartilage transplanted in osteochondral defects in vivo.Okutani Y., Abe K., Yamashita A., et al. Generation of Monkey Induced Pluripotent Stem Cell-Derived Cartilage Lacking Major Histocompatibility Complex Class I Molecules on the Cell Surface. Tissue Engineering - Part A 28, 94 (2022); https://doi.org/10.1089/ten.tea.2021.0053
Similar and Differing Distributions Between 18F-FDG-PET and Arterial Spin Labeling Imaging in Temporal Lobe Epilepsy
Background: Despite the increasing use of arterial spin labeling (ASL) in patients with epilepsy, little is known about its brain regional distribution pattern, including diaschisis, and its correspondence with FDG-PET. Here, we investigated the regional match and mismatch between FDG-PET and ASL in temporal lobe epilepsy (TLE).Methods: We recruited 27 patients with unilateral TLE, who underwent inter-ictal ASL and FDG-PET scans. These images were spatially normalized using Statistical Parametric Mapping 12, and the regional values in both ASL and FDG-PET were calculated using PMOD software within 20 volumes of interest (VOIs), including the temporal lobe, adjacent cortices, subcortical structures, and cerebellum. ASL images of 37 healthy controls were also analyzed and compared.Results: Whereas, ASL showed significant side differences, mainly in the temporal and frontal lobes, the significant abnormalities in FDG-PET were more widespread and included the insula and supramarginal gyrus. Ipsilateral thalamic reduction was found in FDG-PET only. The detectability of the focus side compared with the contralateral side was generally higher in FDG-PET. The discriminative values in ASL compared with healthy controls were higher in temporal neocortex and amygdala VOIs.Conclusions: There are similar and differing regional distributions between FDG-PET and ASL in TLE, possibly reflecting regional match and mismatch of cerebral blood flow and metabolism. At this stage, it seems that ASL couldn't present comparable clinical usefulness with FDG-PET. These findings deepen our knowledge of ASL imaging and are potentially useful for its further application
Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect
Induced pluripotent stem cells (iPSCs) are a promising resource for allogeneic cartilage transplantation to treat articular cartilage defects that do not heal spontaneously and often progress to debilitating conditions, such as osteoarthritis. However, to the best of our knowledge, allogeneic cartilage transplantation into primate models has never been assessed. Here, we show that allogeneic iPSC-derived cartilage organoids survive and integrate as well as are remodeled as articular cartilage in a primate model of chondral defects in the knee joints. Histological analysis revealed that allogeneic iPSC-derived cartilage organoids in chondral defects elicited no immune reaction and directly contributed to tissue repair for at least four months. iPSC-derived cartilage organoids integrated with the host native articular cartilage and prevented degeneration of the surrounding cartilage. Single-cell RNA-sequence analysis indicated that iPSC-derived cartilage organoids differentiated after transplantation, acquiring expression of PRG4 crucial for joint lubrication. Pathway analysis suggested the involvement of SIK3 inactivation. Our study outcomes suggest that allogeneic transplantation of iPSC-derived cartilage organoids may be clinically applicable for the treatment of patients with chondral defects of the articular cartilage; however further assessment of functional recovery long term after load bearing injuries is required
Impact of Sleep–Wake-Associated Neuromodulators and Repetitive Low-Frequency Stimulation on Human iPSC-Derived Neurons
The cross-regional neurons in the brainstem, hypothalamus, and thalamus regulate the central nervous system, including the cerebral cortex, in a sleep–wake cycle-dependent manner. A characteristic brain wave, called slow wave, of about 1 Hz is observed during non-REM sleep, and the sleep homeostasis hypothesis proposes that the synaptic connection of a neural network is weakened during sleep. In the present study, in vitro human induced pluripotent stem cell (iPSC)-derived neurons, we investigated the responses to the neuromodulator known to be involved in sleep–wake regulation. We also determined whether long-term depression (LTD)-like phenomena could be induced by 1 Hz low-frequency stimulation (LFS), which is within the range of the non-REM sleep slow wave. A dose-dependent increase was observed in the number of synchronized burst firings (SBFs) when 0.1–1000 nM of serotonin, acetylcholine, histamine, orexin, or noradrenaline, all with increased extracellular levels during wakefulness, was administered to hiPSC-derived dopaminergic (DA) neurons. The number of SBFs repeatedly increased up to 5 h after 100 nM serotonin administration, inducing a 24-h rhythm cycle. Next, in human iPSC-derived glutamate neurons, 1 Hz LFS was administered four times for 15 min every 90 min. A significant reduction in both the number of firings and SBFs was observed in the 15 min immediately after LFS. Decreased frequency of spontaneous activity and recovery over time were repeatedly observed. Furthermore, we found that LFS attenuates synaptic connections, and particularly attenuates the strong connections in the neuronal network, and does not cause uniform attenuation. These results suggest sleep–wake states can be mimicked by cyclic neuromodulator administration and show that LTD-like phenomena can be induced by LFS in vitro human iPSC-derived neurons. These results could be applied in studies on the mechanism of slow waves during sleep or in an in vitro drug efficacy evaluation depending on sleep–wake state
Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect
Induced pluripotent stem cells (iPSCs) are a promising resource for allogeneic cartilage transplantation to treat articular cartilage defects that do not heal spontaneously and often progress to debilitating conditions, such as osteoarthritis. However, to the best of our knowledge, allogeneic cartilage transplantation into primate models has never been assessed. Here, we show that allogeneic iPSC-derived cartilage organoids survive and integrate as well as are remodeled as articular cartilage in a primate model of chondral defects in the knee joints. Histological analysis revealed that allogeneic iPSC-derived cartilage organoids in chondral defects elicited no immune reaction and directly contributed to tissue repair for at least four months. iPSC-derived cartilage organoids integrated with the host native articular cartilage and prevented degeneration of the surrounding cartilage. Single-cell RNA-sequence analysis indicated that iPSC-derived cartilage organoids differentiated after transplantation, acquiring expression of PRG4 crucial for joint lubrication. Pathway analysis suggested the involvement of SIK3 inactivation. Our study outcomes suggest that allogeneic transplantation of iPSC-derived cartilage organoids may be clinically applicable for the treatment of patients with chondral defects of the articular cartilage; however further assessment of functional recovery long term after load bearing injuries is required.Abe K., Yamashita A., Morioka M., et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nature Communications 14, 804 (2023); https://doi.org/10.1038/s41467-023-36408-0
Changes of Myelin Organization in Patients with Alzheimer’s Disease Shown by q-Space Myelin Map Imaging
Background: Recent studies detected the aberrant myelination of the central nervous system (CNS) in Alzheimer’s disease (AD). Here, we compared the change of myelination between patients with AD and controls by a novel magnetic resonance imaging modality, “q-space myelin map (MM) imaging.” Methods: Twenty patients with AD and 18 healthy subjects underwent MM imaging. We compared the MM metric between the 2 groups and examined the relationships between the metric and the clinical symptoms of AD. Results: AD patients showed a significant reduction of MM metric in the hippocampus, insula, precuneus, and anterior cingulate regions. There was also a significant negative correlation between the duration of illness and the MM metric in the temporoparietal region. Conclusion: Our findings suggest that MM imaging could be a clinically proper modality to estimate the myelination changes in AD patients
Unique B-1 cells specific for both N-pyrrolated proteins and DNA evolve with apolipoprotein E deficiency
peer reviewedLysine N-pyrrolation, a posttranslational modification, which converts lysine residues to N ε -pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE−/−) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE−/− mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE−/− mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity
- …