5 research outputs found

    Cardiovascular Mortality Can Be Predicted by Heart Rate Turbulence in Hemodialysis Patients

    Get PDF
    Background: Excess mortality in hemodialysis patients is mostly of cardiovascular origin. We examined the association of heart rate turbulence (HRT), a marker of baroreflex sensitivity, with cardiovascular mortality in hemodialysis patients. Methods: A population of 290 prevalent hemodialysis patients was followed up for a median of 3 years. HRT categories 0 (both turbulence onset [TO] and slope [TS] normal), 1 (TO or TS abnormal), and 2 (both TO and TS abnormal) were obtained from 24 h Holter recordings. The primary end-point was cardiovascular mortality. Associations of HRT categories with the endpoints were analyzed by multivariable Cox regression models including HRT, age, albumin, and the improved Charlson Comorbidity Index for hemodialysis patients. Multivariable linear regression analysis identified factors associated with TO and TS. Results: During the follow-up period, 20 patients died from cardiovascular causes. In patients with HRT categories 0, 1 and 2, cardiovascular mortality was 1, 10, and 22%, respectively. HRT category 2 showed the strongest independent association with cardiovascular mortality with a hazard ratio of 19.3 (95% confidence interval: 3.69-92.03;P < 0.001). Age, calcium phosphate product, and smoking status were associated with TO and TS. Diabetes mellitus and diastolic blood pressure were only associated with TS. Conclusion: Independent of known risk factors, HRT assessment allows identification of hemodialysis patients with low, intermediate, and high risk of cardiovascular mortality. Future prospective studies are needed to translate risk prediction into risk reduction in hemodialysis patients

    Reduced Mortality in Maintenance Haemodialysis Patients on High versus Low Dialysate Magnesium: A Pilot Study

    No full text
    Background: Although low magnesium levels have been associated with an increased mortality in dialysis patients, they are kept low by routinely-used dialysates containing 0.50 mmol/L magnesium. Thus, we investigated the impact of a higher dialysate magnesium concentration on mortality. Methods: 25 patients on high dialysate magnesium (HDM) of 0.75 mmol/L were 1:2 matched to 50 patients on low dialysate magnesium (LDM) of 0.50 mmol/L and followed up for 3 years with regards to all-cause and cardiovascular mortality. Patients were matched according to age, gender, a modified version of the Charlson Comorbidity Index (CCI), and smoking status. Results: During the follow-up period, five patients died in the HDM and 18 patients in the LDM group. Patients in the HDM group had significantly higher ionized serum magnesium levels than matched controls (0.64 ± 0.12 mmol/L vs. 0.57 ± 0.10 mmol/L, p = 0.034). Log rank test showed no difference between treatment groups for all-cause mortality. After adjustment for age and CCI, Cox proportional hazards regression showed that HDM independently predicted a 65% risk reduction for all-cause mortality (hazard ratio 0.35, 95% confidence interval [CI]: 0.13, 0.97). Estimated 3-year probability of death from a cardiovascular event was 14.5% (95% CI: 7.9, 25.8) in the LDM group vs. 0% in the HDM group. Log rank test found a significant group difference for cardiovascular mortality (χ2 = 4.15, p = 0.042). Conclusions: Our data suggests that there might be a beneficial effect of an increased dialysate magnesium on cardiovascular mortality in chronic dialysis patients

    Electrocardiographic parameters of left ventricular hypertrophy and prediction of mortality in hemodialysis patients

    No full text
    Background!#!In hemodialysis patients, left ventricular hypertrophy (LVH) contributes to high cardiovascular mortality. We examined cardiovascular mortality prediction by the recently proposed Peguero-Lo Presti voltage since it identifies more patients with electrocardiographic (ECG) LVH than Cornell or Sokolow-Lyon voltages.!##!Methods!#!A total of 308 patients on hemodialysis underwent 24 h ECG recordings. LVH parameters were measured before and after dialysis. The primary endpoint of cardiovascular mortality was recorded during a median 3-year follow up. Risk prediction was assessed by Cox regression, both unadjusted and adjusted for the Charlson Comorbidity Index and the Cardiovascular Mortality Risk Score.!##!Results!#!The Peguero-Lo Presti voltage identified with 21% the most patients with positive LVH criteria. All voltages significantly increased during dialysis. Factors such as ultrafiltration rate, Kt/V, body mass index, sex, and phosphate were the most relevant for these changes. During follow-up, 26 cardiovascular deaths occurred. Post-dialysis Peguero-Lo Presti cut-off as well as the Peguero-Lo Presti and Cornell voltages were independently associated with cardiovascular mortality in unadjusted and adjusted analysis. The Sokolow-Lyon voltage was not significantly associated with mortality. An optimal cut-off for the prediction of cardiovascular mortality was estimated at 1.38 mV for the Peguero-Lo Presti.!##!Conclusions!#!The post-dialysis Peguero-Lo Presti cut-off as well as the Peguero-Lo Presti and Cornell voltages allowed independent risk prediction of cardiovascular mortality in hemodialysis patients. Measuring the ECG LVH parameters after dialysis might allow a standardized interpretation as dialysis-specific factors influence the voltages
    corecore