5 research outputs found

    Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations

    Full text link
    The critical behavior of long straight rigid rods of length kk (kk-mers) on square and triangular lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of parallel kk-mers, was found. This ordered phase is separated from the isotropic state by a continuous transition occurring at a intermediate density θc\theta_c. Two analytical techniques were combined with Monte Carlo simulations to predict the dependence of θc\theta_c on kk, being θc(k)k1\theta_c(k) \propto k^{-1}. The first involves simple geometrical arguments, while the second is based on entropy considerations. Our analysis allowed us also to determine the minimum value of kk (kmin=7k_{min}=7), which allows the formation of a nematic phase on a triangular lattice.Comment: 23 pages, 5 figures, to appear in The Journal of Chemical Physic

    Entropy-driven phase transition in a system of long rods on a square lattice

    Full text link
    The isotropic-nematic (I-N) phase transition in a system of long straight rigid rods of length k on square lattices is studied by combining Monte Carlo simulations and theoretical analysis. The process is analyzed by comparing the configurational entropy of the system with the corresponding to a fully aligned system, whose calculation reduces to the 1D case. The results obtained (1) allow to estimate the minimum value of k which leads to the formation of a nematic phase and provide an interesting interpretation of this critical value; (2) provide numerical evidence on the existence of a second phase transition (from a nematic to a non-nematic state) occurring at density close to 1 and (3) allow to test the predictions of the main theoretical models developed to treat the polymers adsorption problem.Comment: 14 pages, 6 figures. Accepted for publication in JSTA

    Determination of the Critical Exponents for the Isotropic-Nematic Phase Transition in a System of Long Rods on Two-dimensional Lattices: Universality of the Transition

    Full text link
    Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior and universality for the isotropic-nematic phase transition in a system of long straight rigid rods of length kk (kk-mers) on two-dimensional lattices. The nematic phase, characterized by a big domain of parallel kk-mers, is separated from the isotropic state by a continuous transition occurring at a finite density. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the transition belongs to the 2D Ising universality class for square lattices and the three-state Potts universality class for triangular lattices.Comment: 7 pages, 8 figures, uses epl2.cls, to appear in Europhysics Letter

    Nonmonotonic size dependence of the critical concentration in 2D percolation of straight rigid rods under equilibrium conditions

    No full text
    Numerical simulations and finite-size scaling analysis have been carried out to study the percolation behavior of straight rigid rods of length kk (kk-mers) on two-dimensional square lattices. The kk-mers, containing kk identical units (each one occupying a lattice site), were adsorbed at equilibrium on the lattice. The process was monitored by following the probability RL,k(θ)R_{L,k}(\theta) that a lattice composed of L×LL \times L sites percolates at a concentration θ\theta of sites occupied by particles of size kk. A nonmonotonic size dependence was observed for the percolation threshold, which decreases for small particles sizes, goes through a minimum, and finally asymptotically converges towards a definite value for large segments. This striking behavior has been interpreted as a consequence of the isotropic-nematic phase transition occurring in the system for large values of kk. Finally, the universality class of the model was found to be the same as for the random percolation model.Comment: 21 pages, 4 figure
    corecore