6 research outputs found

    Recovery of palladium from waste fashion items through food waste by-products

    Get PDF
    ABSTRACT: Palladium is a non-toxic platinum group metal indispensable for several industrial applications. It is among the 44 endangered elements; hence, its recycling from secondary sources is crucial. Waste plated metal wires from the fashion industry are an important waste stream for this precious metal. We propose a sustainable route for Pd recovery where palladium peels off in its metallic state in a single-step, room-temperature process. At the same time, readily oxidizable base metals are leached under very mild conditions using a green oxidant, hydrogen peroxide, and lactic acid, a food chain byproduct. This strategy is chemically rational, cost-effective, and environmentally friendly. The recovered Pd was successfully recycled to fabricate source and drain electrodes in organic field-effect transistors. Waste wires, recovered palladium flakes, and e-beam evaporated Pd electrodes were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy to examine their morphology and (surface) chemical composition

    Nature as the source of materials for more sustainable organic electronics

    No full text

    Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage

    No full text
    The disruption of iron homeostasis is an important factor in the loss of mitochondrial function in neural cells, leading to neurodegeneration. Here, we assessed the protective action of gossypitrin (Gos), a naturally occurring flavonoid, on iron-induced neuronal cell damage using mouse hippocampal HT-22 cells and mitochondria isolated from rat brains. Gos was able to rescue HT22 cells from the damage induced by 100 ”M Fe(II)-citrate (EC50 8.6 ”M). This protection was linked to the prevention of both iron-induced mitochondrial membrane potential dissipation and ATP depletion. In isolated mitochondria, Gos (50 ”M) elicited an almost complete protection against iron-induced mitochondrial swelling, the loss of mitochondrial transmembrane potential and ATP depletion. Gos also prevented Fe(II)-citrate-induced mitochondrial lipid peroxidation with an IC50 value (12.45 ”M) that was about nine time lower than that for the tert-butylhydroperoxide-induced oxidation. Furthermore, the flavonoid was effective in inhibiting the degradation of both 15 and 1.5 mM 2-deoxyribose. It also decreased Fe(II) concentration with time, while increasing O2 consumption rate, and impairing the reduction of Fe(III) by ascorbate. Gos–Fe(II) complexes were detected by UV-VIS and IR spectroscopies, with an apparent Gos-iron stoichiometry of 2:1. Results suggest that Gos does not generally act as a classical antioxidant, but it directly affects iron, by maintaining it in its ferric form after stimulating Fe(II) oxidation. Metal ions would therefore be unable to participate in a Fenton-type reaction and the lipid peroxidation propagation phase. Hence, Gos could be used to treat neuronal diseases associated with iron-induced oxidative stress and mitochondrial damage

    Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study

    No full text
    More contemporary options have been presented in the last few years as surgical methods and materials have improved in patients with degenerative spine illnesses. The use of biologically integrated titanium cages of a unique design based on computer 3D modeling for the surgical treatment of patients with degenerative illnesses of the spine’s intervertebral discs has been proposed and experimentally tested. The goal of this study is to compare the radiographic and clinical outcomes of lumbar posterior interbody fusion with a 3D porous titanium alloy cage versus a titanium-coated polyetheretherketone (PEEK) cage, including fusion quality, time to fusion, preoperative and postoperative patient assessments, and the presence, severity, and other side effect characteristics. (1) Methods: According to the preceding technique, patients who were operated on with physiologically integrated titanium cages of a unique design based on 3D computer modeling were included in the study group. This post-surveillance study was conducted as a randomized, prospective, interventional, single-blind, center study to look at the difference in infusion rates and the difference compared to PEEK cages. The patients were evaluated using CT scans, Oswestry questionnaires (every 3, 6, and 12 months), and VAS scales. (2) Results: Six months following surgery, the symptoms of fusion and the degree of cage deflation in the group utilizing the porous titanium 3D cage were considerably lower than in the group using the PEEK cage (spinal fusion sign, p = 0.044; cage subsidence, p = 0.043). The control group had one case of cage migration into the spinal canal with screw instability, one case of screw instability without migration but with pseudoarthrosis formation and two surrounding segment syndromes with surgical revisions compared with the 3D porous titanium alloy cage group. (3) Conclusions: The technique for treating patients with degenerative disorders or lumbar spine instability with aspects of neural compression utilizing biologically integrated titanium cages of a unique design based on computer 3D printing from CT scans has been proven. This allows a new approach of spinal fusion to be used in practice, restoring the local sagittal equilibrium of the spinal motion segment and lowering the risk of pseudarthrosis and revision surgery

    Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study

    No full text
    More contemporary options have been presented in the last few years as surgical methods and materials have improved in patients with degenerative spine illnesses. The use of biologically integrated titanium cages of a unique design based on computer 3D modeling for the surgical treatment of patients with degenerative illnesses of the spine’s intervertebral discs has been proposed and experimentally tested. The goal of this study is to compare the radiographic and clinical outcomes of lumbar posterior interbody fusion with a 3D porous titanium alloy cage versus a titanium-coated polyetheretherketone (PEEK) cage, including fusion quality, time to fusion, preoperative and postoperative patient assessments, and the presence, severity, and other side effect characteristics. (1) Methods: According to the preceding technique, patients who were operated on with physiologically integrated titanium cages of a unique design based on 3D computer modeling were included in the study group. This post-surveillance study was conducted as a randomized, prospective, interventional, single-blind, center study to look at the difference in infusion rates and the difference compared to PEEK cages. The patients were evaluated using CT scans, Oswestry questionnaires (every 3, 6, and 12 months), and VAS scales. (2) Results: Six months following surgery, the symptoms of fusion and the degree of cage deflation in the group utilizing the porous titanium 3D cage were considerably lower than in the group using the PEEK cage (spinal fusion sign, p = 0.044; cage subsidence, p = 0.043). The control group had one case of cage migration into the spinal canal with screw instability, one case of screw instability without migration but with pseudoarthrosis formation and two surrounding segment syndromes with surgical revisions compared with the 3D porous titanium alloy cage group. (3) Conclusions: The technique for treating patients with degenerative disorders or lumbar spine instability with aspects of neural compression utilizing biologically integrated titanium cages of a unique design based on computer 3D printing from CT scans has been proven. This allows a new approach of spinal fusion to be used in practice, restoring the local sagittal equilibrium of the spinal motion segment and lowering the risk of pseudarthrosis and revision surgery
    corecore