2 research outputs found

    Relative entropy, Haar measures and relativistic canonical velocity distributions

    Get PDF
    The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS) entropy is reconsidered by combining elements from group and measure theory. Our analysis starts by noting that the BGS entropy is a special case of relative entropy. The latter characterizes probability distributions with respect to a pre-specified reference measure. To identify the canonical BGS entropy with a relative entropy is appealing for two reasons: (i) the maximum entropy principle assumes a coordinate invariant form; (ii) thermodynamic equilibrium distributions, which are obtained as solutions of the maximum entropy problem, may be characterized in terms of the transformation properties of the underlying reference measure (e.g., invariance under group transformations). As examples, we analyze two frequently considered candidates for the one-particle equilibrium velocity distribution of an ideal gas of relativistic particles. It becomes evident that the standard J\"uttner distribution is related to the (additive) translation group on momentum space. Alternatively, imposing Lorentz invariance of the reference measure leads to a so-called modified J\"uttner function, which differs from the standard J\"uttner distribution by a prefactor, proportional to the inverse particle energy.Comment: 15 pages: extended version, references adde
    corecore