39 research outputs found

    Effects of improved sodium uptake ability on grain yields of rice plants under low potassium supply

    Get PDF
    Sodium uptake is a factor that determines potassium use efficiency in plants as sodium can partially replace potassium in plant cells. Rice (Oryza sativa) roots usually exclude sodium but actively take it up when the plant is deficient in potassium. In rice roots, a sodium transporter OsHKT2;1 mediates active sodium uptake. We previously revealed that variation in the expression of OsHKT2;1 underlies the variation in sodium accumulation between a low-sodium-accumulating indica cultivar, IR64, and a high-sodium-accumulating japonica cultivar, Koshihikari. In the present study, we evaluated IR64 and its near-isogenic line IR64-K carrying OsHKT2;1 and neighboring genes inherited from Koshihikari for grain yield. IR64-K had a greater average grain yield and harvest index than IR64 in a pot culture experiment with three levels of potassium fertilizer. The differences were most significant under treatment without the potassium fertilizer. IR64-K also showed a slightly higher grain yield than IR64 when grown in a paddy field without applying the potassium fertilizer. These results suggest that enhanced sodium uptake ability improves the grain yield of rice plants under low-potassium-input conditions

    Assessment of Cadmium and Zinc Contamination in the Soils Around Pha Te Village, Mae Sot District, Tak Province, Thailand

    Get PDF
    In this study sequential extraction was used to fractionate cadmium (Cd) and zinc (Zn) from soils into six operationally defined groups; water soluble, buffer-exchangeable, carbonate, FeMn oxide, organic, and residual. Soil samples from agricultural areas surrounding Pha Te village, Mae Sot District, Tak Province, Thailand, were classified into four categories; forest soil, upland soil, upper-paddy soil and lower-paddy soil. Total soil Cd and Zn concentrations ranged from 0.63 to 30.4 mg kg-1 and 14.4 to 594 mg kg-1, respectively. Cd and Zn concentrations were higher in the upper- and lower-paddy soil (5.93 to 30.4 mg kg-1 for Cd and 286 to 594 mg kg-1 for Zn). These soils are considered as polluted. Cd in the polluted soil was dominantly associated with the buffer-exchangeable and carbonate-bound (40 to 70 % of total Cd), while in non-polluted soils; the residual fraction was dominant (50 to 80 % of the total Cd). The major proportion of Zn (37 to 46 % of total Zn) in the non-polluted soil and the upper-paddy soil occurred in the residual fraction. On the other hand, the major proportion of total Zn in the lower-paddy soil was associated with FeMn oxides (36 % of total Zn). The results show that mobility and potential bioavailability of Cd and Zn (61 and 25 %) in polluted soil were higher than in non-polluted soils (15 and 19 % in Cd and Zn, respectively). Metal distribution in different chemical fractions in these soils depended on the respective total metal concentrations

    Massively parallel single-cell genomics of microbiomes in rice paddies

    Get PDF
    世界初のイネ根圏微生物叢の網羅的1細胞ゲノム解析に成功 --コメ生産現場が抱える問題のデータベース化に向けて--. 京都大学プレスリリース. 2022-11-09.Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant–microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3, 237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production

    Nutrient Balance in the Paddy Field of Northeast Thailand (<Special Issue>Transformation of Agriculture in Northeast Thailand)

    Get PDF
    この論文は国立情報学研究所の学術雑誌公開支援事業により電子化されました。To examine whether the prevailing rice farming in Northeast Thailand is sustainable in terms of agro-ecology, the gain and loss of plant nutrients between a paddy plot and its surroundings were studied in the village of Um Mao, Roi Et Province from 1993. The loss of major nutrients, including N, P and K, from the paddies in the form of harvested grains was well balanced by the gain from chemical fertilizers. It was judged that the present farming is fairly compatible with the environment at the current yield level of around 2 ton of unhusked grain per ha. Higher than the present dose of fertilizer would probably result in lower efficiency of application and little increase in the yield. Farmers appear to be well aware of this. For further improvement of the productivity, other means should be sought

    Identification of quantitative trait loci associated with shoot sodium accumulation under low potassium conditions in rice plants

    Get PDF
    Sodium (Na) application has marked beneficial effects on plant growth when the potassium (K) supply is low. Under low K supply, three japonica rice (Oryza sativa L.) cultivars, Koshihikari, Nipponbare, and Sasanishiki, accumulated more Na than three indica cultivars, IR36, IR64, and Kasalath, and the effect of Na application on growth was greater in japonica Koshihikari plants than in indica IR64 plants. A quantitative trait locus (QTL) analysis using a population of backcross inbred lines derived from japonica Koshihikari and indica Kasalath identified two significant loci associated with shoot Na concentration on chromosomes 3 and 6. The quantitative trait locus for shoot Na accumulation on chromosome 6 was confirmed in a population of chromosome segment substitution lines. The major QTL detected in this study could be useful for increasing crop productivity under low K input

    The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    No full text
    Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1), and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP)+ inorganic P (EDTA ext Pi)] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand

    Expression level of the sodium transporter gene OsHKT2;1 determines sodium accumulation of rice cultivars under potassium-deficient conditions

    Get PDF
    Under potassium (K)-deficient conditions, rice (Oryza sativa L.) actively takes up and utilizes sodium (Na) as an alternative element to K. In this study, we cloned a gene responsible for cultivar differences in shoot Na accumulation using a map-based cloning method. The responsible gene OsHKT2;1 encodes an Na transporter associated with Na uptake in root tissues, and its expression level was positively correlated with Na uptake potential in 11 rice cultivars. We found that OsHKT2;1 overexpression promoted shoot Na accumulation under low K supply and proposed that OsHKT2;1 expression level is a key factor in the Na accumulation potential in rice cultivars. However, under sufficient K supply, OsHKT2;1-overexpressing rice plants accumulated Na in roots but not in shoots. This result suggests that Na transfer from root to shoot may be regulated by another Na transporter

    Suppression of a NAC-Like Transcription Factor Gene Improves Boron-Toxicity Tolerance in Rice1

    No full text
    We identified a gene responsible for tolerance to boron (B) toxicity in rice (Oryza sativa), named BORON EXCESS TOLERANT1. Using recombinant inbred lines derived from the B-toxicity-sensitive indica-ecotype cultivar IR36 and the tolerant japonica-ecotype cultivar Nekken 1, the region responsible for tolerance to B toxicity was narrowed to 49 kb on chromosome 4. Eight genes are annotated in this region. The DNA sequence in this region was compared between the B-toxicity-sensitive japonica cultivar Wataribune and the B-toxicity-tolerant japonica cultivar Nipponbare by eco-TILLING analysis and revealed a one-base insertion mutation in the open reading frame sequence of the gene Os04g0477300. The gene encodes a NAC (NAM, ATAF, and CUC)-like transcription factor and the function of the transcript is abolished in B-toxicity-tolerant cultivars. Transgenic plants in which the expression of Os04g0477300 is abolished by RNA interference gain tolerance to B toxicity
    corecore