1,381 research outputs found

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Neural superposition and oscillations in the eye of the blowfly

    Get PDF
    Neural superposition in the eye of the blowfly Calliphora erythrocephala was investigated by stimulating single photoreceptors using corneal neutralization through water immersion. Responses in Large Monopolar Cells (LMCs) in the lamina were measured, while stimulating one or more of the six photoreceptors connected to the LMC. Responses to flashes of low light intensity on individual photoreceptors add approximately linearly at the LMC. Higher intensity light flashes produce a maximum LMC response to illumination of single photoreceptors which is about half the maximum response to simultaneous illumination of the six connecting photoreceptors. This observation indicates that a saturation can occur at a stage of synaptic transmission which precedes the change in the post-synaptic membrane potential. Stimulation of single photoreceptors yields high frequency oscillations (about 200 Hz) in the LMC potential, much larger in amplitude than produced by simultaneous stimulation of the six photoreceptors connected to the LMC. It is discussed that these oscillations also arise from a mechanism that precedes the change in the postsynaptic membrane potential.

    Positive temperature versions of two theorems on first-passage percolation

    Full text link
    The estimates on the fluctuations of first-passsage percolation due to Talagrand (a tail bound) and Benjamini--Kalai--Schramm (a sublinear variance bound) are transcribed into the positive-temperature setting of random Schroedinger operators.Comment: 15 pp; to appear in GAFA Seminar Note
    • …
    corecore