2,172 research outputs found

    CMB Polarization Experiments

    Get PDF
    We discuss the analysis of polarization experiments with particular emphasis on those that measure the Stokes parameters on a ring on the sky. We discuss the ability of these experiments to separate the EE and BB contributions to the polarization signal. The experiment being developed at Wisconsin university is studied in detail, it will be sensitive to both Stokes parameters and will concentrate on large scale polarization, scanning a 47o47^o degree ring. We will also consider another example, an experiment that measures one of the Stokes parameters in a 1o1^o ring. We find that the small ring experiment will be able to detect cosmological polarization for some models consistent with the current temperature anisotropy data, for reasonable integration times. In most cosmological models large scale polarization is too small to be detected by the Wisconsin experiment, but because both QQ and UU are measured, separate constraints can be set on EE and BB polarization.Comment: 27 pages with 12 included figure

    Primordial Bispectrum Information from CMB Polarization

    Full text link
    After the precise observations of the Cosmic Microwave Background (CMB) anisotropy power spectrum, attention is now being focused on the higher order statistics of the CMB anisotropies. Since linear evolution preserves the statistical properties of the initial conditions, observed non-Gaussianity of the CMB will mirror primordial non-Gaussianity. Single field slow-roll inflation robustly predicts negligible non-Gaussianity so an indication of non-Gaussianity will suggest alternative scenarios need to be considered. In this paper we calculate the information on primordial non-Gaussianity encoded in the polarization of the CMB. After deriving the optimal weights for a cubic estimator we evaluate the Signal-to-Noise ratio of the estimator for WMAP, Planck and an ideal cosmic variance limited experiment. We find that when the experiment can observe CMB polarization with good sensitivity, the sensitivity to primordial non-Gaussianity increases by roughly a factor of two. We also test the weakly non-Gaussian assumption used to derive the optimal weight factor by calculating the degradation factor produced by the gravitational lensing induced connected four-point function. The physical scales in the radiative transfer functions are largely irrelevant for the constraints on the primordial non-Gaussianity. We show that the total (S/N)^2 is simply proportional to the number of observed pixels on the sky.Comment: To be submitted to PRD, 25 pages, 6 figure

    Modelling the spinning dust emission from LDN 1780

    Full text link
    We study the anomalous microwave emission (AME) in the Lynds Dark Nebula (LDN) 1780 on two angular scales. Using available ancillary data at an angular resolution of 1 degree, we construct an SED between 0.408 GHz to 2997 GHz. We show that there is a significant amount of AME at these angular scales and the excess is compatible with a physical spinning dust model. We find that LDN 1780 is one of the clearest examples of AME on 1 degree scales. We detected AME with a significance > 20σ\sigma. We also find at these angular scales that the location of the peak of the emission at frequencies between 23-70 GHz differs from the one on the 90-3000 GHz map. In order to investigate the origin of the AME in this cloud, we use data obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) that provides 2 arcmin resolution at 30 GHz. We study the connection between the radio and IR emissions using morphological correlations. The best correlation is found to be with MIPS 70μ\mum, which traces warm dust (T\sim50K). Finally, we study the difference in radio emissivity between two locations within the cloud. We measured a factor 6\approx 6 of difference in 30 GHz emissivity. We show that this variation can be explained, using the spinning dust model, by a variation on the dust grain size distribution across the cloud, particularly changing the carbon fraction and hence the amount of PAHs.Comment: 14 pages, 11 figures, submitted to MNRA

    A Description of the Sound System of Misiones Mbya

    Get PDF
    Misiones Mbya is an indigenous language of South America spoken by the Mbya people in the Province of Misiones, Argentina. Although there are several studies in the literature about the Brazilian variety of this language, the linguistic information available about Misiones Mbya is extremely scarce. In this thesis I present a segmental analysis of the language (individual vowels and consonants) and a prosodic analysis of nasal harmony based on field data collected in three different communities in Misiones. The segmental analysis shows that this variety is very similar to the Brazilian variety of the language with only a few exceptions. The prosodic analysis of nasal harmony indicates that nasality fades with distance. It is also shown that some methods for carrying out acoustic analysis of nasality can yield results which can be confounded with stress

    Going beyond the Kaiser redshift-space distortion formula: a full general relativistic account of the effects and their detectability in galaxy clustering

    Full text link
    Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be described using Newtonian dynamics and have been discussed in the literature, while the others require proper general relativistic description that was only recently developed. Accounting for these terms in galaxy clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as two terms that represent the velocity and the gravitational potential contributions. Their amplitude is determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix analysis of detectability of these terms and show that in a single tracer survey they are completely undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling variance and shot noise. We show that in an all-sky galaxy redshift survey at low redshift the velocity term can be measured at a few sigma if one can utilize halos of mass M>10^12 Msun (this can increase to 10-sigma or more in some more optimistic scenarios), while the gravitational potential term itself can only be marginally detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.Comment: 13 pages, 5 figures, published in PR

    Drifting instabilities of cavity solitons in vertical cavity surface-emitting lasers with frequency selective feedback

    Get PDF
    In this paper we study the formation and dynamics of self-propelled cavity solitons (CSs) in a model for vertical cavity surface-emitting lasers (VCSELs) subjected to external frequency selective feedback (FSF), and build their bifurcation diagram for the case where carrier dynamics is eliminated. For low pump currents, we find that they emerge from the modulational instability point of the trivial solution, where traveling waves with a critical wavenumber are formed. For large currents, the branch of self-propelled solitons merges with the branch of resting solitons via a pitchfork bifurcation. We also show that a feedback phase variation of 2\pi can transform a CS (whether resting or moving) into a different one associated to an adjacent longitudinal external cavity mode. Finally, we investigate the influence of the carrier dynamics, relevant for VCSELs. We find and analyze qualitative changes in the stability properties of resting CSs when increasing the carrier relaxation time. In addition to a drifting instability of resting CSs, a new kind of instability appears for certain ranges of carrier lifetime, leading to a swinging motion of the CS center position. Furthermore, for carrier relaxation times typical of VCSELs the system can display multistability of CSs.Comment: 11 pages, 12 figure

    Could Segue 1 be a destroyed star cluster? - a dynamical perspective

    Full text link
    We attempt to find a progenitor for the ultra-faint object Segue 1 under the assumption that it formed as a dark matter free star cluster in the past. We look for orbits, using the elongation of Segue 1 on the sky as a tracer of its path. Those orbits are followed backwards in time to find the starting points of our N-body simulations. The successful orbit, with which we can reproduce Segue 1 has a proper motion of mu_alpha = -0.19 mas/yr and mu_delta = -1.9 mas/yr, placing Segue 1 near its apo-galacticon today. Our best fitting model has an initial mass of 6224 Msun and an initial scale-length of 5.75 pc.Comment: 9 pages, 5 figures, 3 tables, accepted by MNRA

    New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects

    Full text link
    We present a general relativistic description of galaxy clustering in a FLRW universe. The observed redshift and position of galaxies are affected by the matter fluctuations and the gravity waves between the source galaxies and the observer, and the volume element constructed by using the observables differs from the physical volume occupied by the observed galaxies. Therefore, the observed galaxy fluctuation field contains additional contributions arising from the distortion in observable quantities and these include tensor contributions as well as numerous scalar contributions. We generalize the linear bias approximation to relate the observed galaxy fluctuation field to the underlying matter distribution in a gauge-invariant way. Our full formalism is essential for the consistency of theoretical predictions. As our first application, we compute the angular auto correlation of large-scale structure and its cross correlation with CMB temperature anisotropies. We comment on the possibility of detecting primordial gravity waves using galaxy clustering and discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review

    Towards an Optimal Reconstruction of Baryon Oscillations

    Full text link
    The Baryon Acoustic Oscillations (BAO) in the large-scale structure of the universe leave a distinct peak in the two-point correlation function of the matter distribution. That acoustic peak is smeared and shifted by bulk flows and non-linear evolution. However, it has been shown that it is still possible to sharpen the peak and remove its shift by undoing the effects of the bulk flows. We propose an improvement to the standard acoustic peak reconstruction. Contrary to the standard approach, the new scheme has no free parameters, treats the large-scale modes consistently, and uses optimal filters to extract the BAO information. At redshift of zero, the reconstructed linear matter power spectrum leads to a markedly improved sharpening of the reconstructed acoustic peak compared to standard reconstruction.Comment: 20 pages, 5 figures; footnote adde

    Ductus venosus agenesis and fetal malformations: what can we expect? - a systematic review of the literature

    Get PDF
    Background: The ductus venosus agenesis (DVA) is a rare condition with a variable prognosis that relies partly on the presence of associated conditions. The purpose of our study was to analyze the literature regarding the postnatal outcome of fetuses with DVA associated with fetal malformations, in order to discuss the best management options for couples. Methods: We performed a systematic review of the literature of MEDLINE and SCOPUS electronic databases in a 25-year period from 1992 to September 2017. Results: We found 340 cases of DVA associated with fetal abnormalities. The most common chromosomal abnormalities were: monosomy X (12/48, 25%), trisomy 21 (11/48, 22.9%) and trisomy 18 (6/48, 12.5%). From the 340 cases with DVA, in 31 cases the umbilical venous shunt type was not reported. Of the fetuses, 60.8% (188/309) had an extrahepatic umbilical venous drainage while 39.2% (121/309) presented an intrahepatic connection. The DVA was associated in 71 cases (23.0%) with cardiac abnormalities, in 82 cases (26.5%) with extracardiac abnormalities and in 85 cases (27.5%) with both cardiac and extracardiac abnormalities. Conclusion: DVA associated with both cardiac and extracardiac malformations may confer a poorer fetal outcome, a clinically relevant fact that should clarify what can be expected from this entity and help prenatal counseling
    corecore