172 research outputs found
Recommended from our members
Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review
Background: Dry food products are often highly contaminated, and dry stress-resistant microorganisms, such as certain types of Salmonella and bacterial spores, can be still viable and multiply if the product is incorporated into high moisture food products or rehydrated. Traditional technologies for the decontamination of these products have certain limitations and drawbacks, such as alterations of product quality, environmental impacts, carcinogenic potential and/or lower consumer acceptance. Cold atmospheric pressure plasma (CAPP) and low energy electron beam (LEEB) are two promising innovative technologies for microbial inactivation on dry food surfaces, which have shown potential to solve these certain limitations. Scope and approach: This review critically summarizes recent studies on the decontamination of dry food surfaces by CAPP and LEEB. Furthermore, proposed inactivation mechanisms, product-process interactions, current limitations and upscaling potential, as well as future trends and research needs for both emerging technologies, are discussed. Key findings and conclusions: CAPP and LEEB are nonthermal technologies with a high potential for the gentle decontamination of dry food surfaces. Both technologies have similarities in their inactivation mechanisms. Due to the limited penetration depth of both technologies, product-process interactions can be minimized by maintaining product quality. A first demonstrator with Technology Readiness Level (TRL) 7 for LEEB has already been introduced into the food industry for the decontamination of herbs and spices. Compared with LEEB, CAPP is at the advanced development stage with TRL 5, for which further work is essential to design systems that are scalable to industrial requirements. © 2018 The Author
Annual fossil organic carbon delivery due to mechanical and chemical weathering of marly badlands areas
International audienceA key issue in the study of the carbon cycle is constraining the stocks and fluxes in and between C-reservoirs. Among these, the role and importance of fossil organic carbon (FOC) release by weathering of outcropping sedimentary rocks on continental surfaces is still debated and remains poorly constrained. Our work focuses on FOC fluxes due to chemical and mechanical weathering of marls in two experimental watersheds with typical badlands geomorphology (Draix watersheds, Laval and Moulin, Alpes de Haute Provence, France). Organic matter from bedrock, soil litter and riverine particles are characterized by Rock-Eval 6 pyrolysis. FOC fluxes due to mechanical weathering are then estimated by monitoring the annual particulate solid exports at the outlets of the watersheds (1985-2005 period). FOC fluxes from chemical weathering were calculated using Ca2+ concentrations in dissolved loads (year 2002) to assess the amount of FOC released by the dissolution of the carbonate matrix. Results show that FOC delivery is mainly driven by mechanical weathering, with a yield ranging from 30 to 59 t km-2 yr-1 in the Moulin (0.08 km2) and Laval (0.86 km2) catchments, respectively, (1985-2005 average). The release of FOC attributed to chemical weathering was 2.2 to 4.2 t km-2 for the year 2002. These high FOC fluxes from badlands are similar to those observed in tectonically active mountain catchments. At a regional scale, badland outcropping within the Durance watershed does not exceed 0.25% in area of the Rhone catchment, but could annually deliver 12 000 t yr-1 of FOC. This flux could correspond to 27% of the total particulate organic carbon (POC) load exported by the Rhone River to the Mediterranean Sea. At a global scale, our findings suggest that erosion of badlands may contribute significantly to the transfer of FOC from continental surfaces to depositional environments
The impact of aging on morphometric changes in the cerebellum: A voxel-based morphometry study
IntroductionAging influences the morphology of the central nervous system. While several previous studies focused on morphometric changes of the supratentorial parts, investigations on age-related cerebellar changes are rare. The literature concerning the morphological changes in the cerebellum is heterogenous depending (i) on the methods used (cerebellar analysis in the context of a whole brain analysis or specific methods for a cerebellar analysis), (ii) the life span that was investigated, and (iii) the analytic approach (i.e., using linear or non-linear methods).MethodsWe fill this research gap by investigating age-dependent cerebellar changes in the aging process occurring before the age of 70 in healthy participants, using non-linear methods and the spatially unbiased infratentorial template (SUIT) toolbox which is specifically developed to examine the cerebellum. Furthermore, to derive an overview of the possible behavioral correlates, we relate our findings to functional maps of the cerebellum. Twenty-four older participants (mean age 64.42 years, SD ± 4.8) and 25 younger participants (mean age 24.6 years, SD ± 2.14) were scanned using a 3 T-MRI, and the resulting data were processed using a SUIT.ResultsGray matter (GM) volume loss was found in older participants in three clusters in the right cerebellar region, namely crus I/II and lobule VI related to the frontoparietal network, with crus I being functionally related to the default-mode network and lobule VI extending into vermis VIIa related to the ventral-attention-network.DiscussionOur results underline an age-related decline in GM volume in the right cerebellar regions that are functionally predominantly related to non-motor networks and cognitive tasks regions of the cerebellum before the age of 70
Interferon-beta-related tumefactive brain lesion in a Caucasian patient with neuromyelitis optica and clinical stabilization with tocilizumab
Background: Neuromyelitis optica (NMO) is a severely disabling inflammatory disorder of the central nervous system and is often misdiagnosed as multiple sclerosis (MS). There is increasing evidence that treatment options shown to be beneficial in MS, including interferon-β (IFN-β), are detrimental in NMO. Case presentation: We here report the first Caucasian patient with aquaporin 4 (AQP4) antibody (NMO-IgG)-seropositive NMO presenting with a tumefactive brain lesion on treatment with IFN-β. Disease started with relapsing optic neuritis and an episode of longitudinally extensive transverse myelitis (LETM) in the absence of any brain MRI lesions or cerebrospinal fluid-restricted oligoclonal bands. After initial misdiagnosis of multiple sclerosis (MS) the patient received subcutaneous IFN-β1b and, subsequently, subcutaneous IFN-β1a therapy for several years. Under this treatment, the patient showed persisting relapse activity and finally presented with a severe episode of subacute aphasia and right-sided hemiparesis due to a large T2 hyperintensive tumefactive lesion of the left brain hemisphere and a smaller T2 lesion on the right side. Despite rituximab therapy two further LETM episodes occurred, resulting in severe neurological deficits. Therapeutic blockade of the interleukin (IL)-6 signalling pathway by tocilizumab was initiated, followed by clinical and radiological stabilization. Conclusion: Our case (i) illustrates the relevance of correctly distinguishing NMO and MS since these disorders differ markedly in their responsiveness to immunomodulatory and -suppressive therapies; (ii) confirms and extends a previous report describing the development of tumefactive brain lesions under IFN-β therapy in two Asian NMO patients; and (iii) suggests tocilizumab as a promising therapeutic alternative in highly active NMO disease courses
Predicting the Response to Intravenous Immunoglobulins in an Animal Model of Chronic Neuritis
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a
disabling autoimmune disorder of the peripheral nervous system (PNS).
Intravenous immunoglobulins (IVIg) are effective in CIDP, but the treatment
response varies greatly between individual patients. Understanding this
interindividual variability and predicting the response to IVIg constitute
major clinical challenges in CIDP. We previously established intercellular
adhesion molecule (ICAM)-1 deficient non-obese diabetic (NOD) mice as a novel
animal model of CIDP. Here, we demonstrate that similar to human CIDP
patients, ICAM-1 deficient NOD mice respond to IVIg treatment by clinical and
histological measures. Nerve magnetic resonance imaging and histology
demonstrated that IVIg ameliorates abnormalities preferentially in distal
parts of the sciatic nerve branches. The IVIg treatment response also featured
great heterogeneity allowing us to identify IVIg responders and non-
responders. An increased production of interleukin (IL)-17 positively
predicted IVIg treatment responses. In human sural nerve biopsy sections, high
numbers of IL-17 producing cells were associated with younger age and shorter
disease duration. Thus, our novel animal model can be utilized to identify
prognostic markers of treatment responses in chronic inflammatory neuropathies
and we identify IL-17 production as one potential such prognostic marker
Parkinson’s disease speech production network as determined by graph-theoretical network analysis
AbstractParkinson’s disease (PD) can affect speech as well as emotion processing. We employ whole-brain graph-theoretical network analysis to determine how the speech-processing network (SPN) changes in PD, and assess its susceptibility to emotional distraction. Functional magnetic resonance images of 14 patients (aged 59.6 ± 10.1 years, 5 female) and 23 healthy controls (aged 64.1 ± 6.5 years, 12 female) were obtained during a picture-naming task. Pictures were supraliminally primed by face pictures showing either a neutral or an emotional expression. PD network metrics were significantly decreased (mean nodal degree, p < 0.0001; mean nodal strength, p < 0.0001; global network efficiency, p < 0.002; mean clustering coefficient, p < 0.0001), indicating an impairment of network integration and segregation. There was an absence of connector hubs in PD. Controls exhibited key network hubs located in the associative cortices, of which most were insusceptible to emotional distraction. The PD SPN had more key network hubs, which were more disorganized and shifted into auditory, sensory, and motor cortices after emotional distraction. The whole-brain SPN in PD undergoes changes that result in (a) decreased network integration and segregation, (b) a modularization of information flow within the network, and (c) the inclusion of primary and secondary cortical areas after emotional distraction
Traffic4cast at NeurIPS 2022 -- Predict Dynamics along Graph Edges from Sparse Node Data: Whole City Traffic and ETA from Stationary Vehicle Detectors
The global trends of urbanization and increased personal mobility force us to
rethink the way we live and use urban space. The Traffic4cast competition
series tackles this problem in a data-driven way, advancing the latest methods
in machine learning for modeling complex spatial systems over time. In this
edition, our dynamic road graph data combine information from road maps,
probe data points, and stationary vehicle detectors in three cities
over the span of two years. While stationary vehicle detectors are the most
accurate way to capture traffic volume, they are only available in few
locations. Traffic4cast 2022 explores models that have the ability to
generalize loosely related temporal vertex data on just a few nodes to predict
dynamic future traffic states on the edges of the entire road graph. In the
core challenge, participants are invited to predict the likelihoods of three
congestion classes derived from the speed levels in the GPS data for the entire
road graph in three cities 15 min into the future. We only provide vehicle
count data from spatially sparse stationary vehicle detectors in these three
cities as model input for this task. The data are aggregated in 15 min time
bins for one hour prior to the prediction time. For the extended challenge,
participants are tasked to predict the average travel times on super-segments
15 min into the future - super-segments are longer sequences of road segments
in the graph. The competition results provide an important advance in the
prediction of complex city-wide traffic states just from publicly available
sparse vehicle data and without the need for large amounts of real-time
floating vehicle data.Comment: Pre-print under review, submitted to Proceedings of Machine Learning
Researc
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
- …