29 research outputs found

    ACADM Frameshift Variant in Cavalier King Charles Spaniels with Medium-Chain Acyl-CoA Dehydrogenase Deficiency

    Get PDF
    A 3-year-old, male neutered Cavalier King Charles Spaniel (CKCS) presented with complex focal seizures and prolonged lethargy. The aim of the study was to investigate the clinical signs, metabolic changes and underlying genetic defect. Blood and urine organic acid analysis revealed increased medium-chain fatty acids and together with the clinical findings suggested a diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. We sequenced the genome of the affected dog and compared the data to 923 control genomes of different dog breeds. The ACADM gene encoding MCAD was considered the top functional candidate gene. The genetic analysis revealed a single homozygous private protein-changing variant in ACADM in the affected dog. This variant, XM_038541645.1:c.444_445delinsGTTAATTCTCAATATTGTCTAAGAATTATG, introduces a premature stop codon and is predicted to result in truncation of ~63% of the wild type MCAD open reading frame, XP_038397573.1:p.(Thr150Ilefs*6). Targeted genotyping of the variant in 162 additional CKCS revealed a variant allele frequency of 23.5% and twelve additional homozygous mutant dogs. The acylcarnitine C8/C12 ratio was elevated ~43.3 fold in homozygous mutant dogs as compared to homozygous wild type dogs. Based on available clinical and biochemical data together with current knowledge in humans, we propose the ACADM frameshift variant as causative variant for the MCAD deficiency with likely contribution to the neurological phenotype in the index case. Testing the CKCS breeding population for the identified ACADM variant is recommended to prevent the unintentional breeding of dogs with MCAD deficiency. Further prospective studies are warranted to assess the clinical consequences of this enzyme defect

    Metabolomics analysis of antiquitin deficiency in cultured human cells and plasma: Relevance to pyridoxine-dependent epilepsy

    Full text link
    Deficiency of antiquitin (α-aminoadipic semialdehyde dehydrogenase), an enzyme involved in lysine degradation and encoded by ALDH7A1, is the major cause of vitamin B6-dependent epilepsy (PDE-ALDH7A1). Despite seizure control with high dose pyridoxine (PN), developmental delay still occurs in approximately 70% of patients. We aimed to investigate metabolic perturbations due to possible previously unidentified roles of antiquitin, which may contribute to developmental delay, as well as metabolic effects of high dose pyridoxine supplementation reflecting the high doses used for seizure control in patients with PDE-ALDH7A1. Untargeted metabolomics by high resolution mass spectrometry (HRMS) was used to analyze plasma of patients with PDE-ALDH7A1 and two independently generated lines of cultured ReNcell CX human neuronal progenitor cells (NPCs) with CRISPR/Cas mediated antiquitin deficiency. Accumulation of lysine pathway metabolites in antiquitin-deficient NPCs and western-blot analysis confirmed knockdown of ALDH7A1. Metabolomics analysis of antiquitin-deficient NPCs in conditions of lysine restriction and PN supplementation identified changes in metabolites related to the transmethylation and transsulfuration pathways and osmolytes, indicating a possible unrecognized role of antiquitin outside the lysine degradation pathway. Analysis of plasma samples of PN treated patients with PDE-ALDH7A1 and antiquitin-deficient NPCs cultured in conditions comparable to the patient plasma samples demonstrated perturbation of metabolites of the gamma-glutamyl cycle, suggesting potential oxidative stress-related effects in PN-treated patients with PDE-ALDH7A1. We postulate that a model of human NPCs with CRISPR/Cas mediated antiquitin deficiency is well suited to characterize previously unreported roles of antiquitin, relevant to this most prevalent form of pyridoxine-dependent epilepsy

    Specific GAG ratios in the diagnosis of mucopolysaccharidoses.

    Get PDF
    Mucopolysaccharidoses (MPS) screening is tedious and still performed by analysis of total glycosaminoglycans (GAG) using 1,9-dimethylmethylene blue (DMB) photometric assay, although false positive and negative tests have been reported. Analysis of differentiated GAGs have been pursued classically by gel electrophoresis or more recently by quantitative LC-MS assays. Secondary elevations of GAGs have been reported in urinary tract infections (UTI). In this manuscript, we describe the diagnostic accuracy of urinary GAG measurements by LC-MS for MPS typing in 68 untreated MPS and mucolipidosis (ML) patients, 183 controls and 153 UTI samples. We report age-dependent reference values and cut-offs for chondroitin sulfate (CS), dermatan sulfate (DS), heparan sulfate (HS) and keratan sulfate (KS) and specific GAG ratios. The use of HS/DS ratio in combination to GAG concentrations normalized to creatinine improves the diagnostic accuracy in MPS type I, II, VI and VII. In total 15 samples classified to the wrong MPS type could be correctly assigned using HS/DS ratio. Increased KS/HS ratio in addition to increased KS improves discrimination of MPS type IV by excluding false positives. Some samples of UTI patients showed elevation of specific GAGs, mainly CS, KS and KS/HS ratio and could be misclassified as MPS type IV. Finally, DMB photometric assay performed in MPS and ML samples reveal four false negative tests (sensitivity of 94%). In conclusion, specific GAG ratios in complement to quantitative GAG values obtained by LC-MS enhance discrimination of MPS types. Exclusion of patients with UTI improve diagnostic accuracy in MPS IV but not in other types

    Spitzer Characterization of Dust in the Ionized Medium of the Large Magellanic Cloud

    Get PDF
    A systematic investigation of dust emission associated with the ionized gas has so far been performed only in our Galaxy and for wavelengths longer than 60 {\mu}m. Newly available Spitzer data now offer the opportunity to carry out a similar analysis in the Large Magellanic Cloud (LMC). By cross-correlating Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) data with the ATCA/Parkes HI 21-cm data, the NANTEN 12CO (J=1-0) data, and both the SHASSA H{\alpha} and the Parkes 6-cm data, we investigate the physical properties of dust associated with the different phases of the gas (atomic, molecular and ionized). In particular, we study the presence and nature of dust from 3.6 to 160 {\mu}m and for various regimes of the ionized gas, spanning emission measures (EM) from \sim 1 pc cm-6 (diffuse component) to \sim 10^3 pc cm-6 (HII regions). Using a dust emission model, and testing our results with several radiation field spectra, we show that dust in the ionized gas is warmer than dust associated with other phases (atomic and molecular). We also find a decrease of the polycyclic aromatic hydrocarbons (PAH) relative abundance with respect to big grains (BGs), as well as an increase of the near infrared (NIR) continuum. These three results (e.g. warmer temperature, decrease of PAH abundance and increase of the NIR continuum) are found consistently for all regimes of the ionized gas. On the contrary, the molecular phase appears to provide favorable conditions for the survival of PAHs. Furthermore, the very small grain (VSG) relative abundance tends to increase in the ionized phase, especially in bright HII regions. Last but not least, our analysis shows that the emissivity of dust associated with the ionized gas is lower in the LMC than in our Galaxy, and that this difference is not accounted for by the lower metallicity of the LMC.Comment: Accepted for publication in ApJ, 15 pages, 5 figures, 3 table

    New insights into human lysine degradation pathways with relevance to pyridoxine‐dependent epilepsy due to antiquitin deficiency

    Full text link
    Deficiency of antiquitin (ATQ), an enzyme involved in lysine degradation, is the major cause of vitamin B6 -dependent epilepsy. Accumulation of the potentially neurotoxic α-aminoadipic semialdehyde (AASA) may contribute to frequently associated developmental delay. AASA is formed by α-aminoadipic semialdehyde synthase (AASS) via the saccharopine pathway of lysine degradation, or, as has been postulated, by the pipecolic acid (PA) pathway, and then converted to α-aminoadipic acid by ATQ. The PA pathway has been considered to be the predominant pathway of lysine degradation in mammalian brain; however, this was refuted by recent studies in mouse. Consequently, inhibition of AASS was proposed as a potential new treatment option for ATQ deficiency. It is therefore of utmost importance to determine whether the saccharopine pathway is also predominant in human brain cells. The route of lysine degradation was analyzed by isotopic tracing studies in cultured human astrocytes, ReNcell CX human neuronal progenitor cells and human fibroblasts, and expression of enzymes of the two lysine degradation pathways was determined by Western blot. Lysine degradation was only detected through the saccharopine pathway in all cell types studied. The enrichment of 15 N-glutamate as a side product of AASA formation through AASS furthermore demonstrated activity of the saccharopine pathway. We provide first evidence that the saccharopine pathway is the major route of lysine degradation in cultured human brain cells. These results support inhibition of the saccharopine pathway as a new treatment option for ATQ deficiency

    Diagnosis of atypical myopathy based on organic acid and acylcarnitine profiles and evolution of biomarkers in surviving horses

    Get PDF
    Background: Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported. Methods: AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC-MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test. Results: All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days. Conclusion: OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals

    Decrease of disease‐related metabolites upon fasting in a hemizygous knock‐in mouse model ( Mut ‐ko/ki) of methylmalonic aciduria

    Get PDF
    Methylmalonyl‐CoA mutase (MMUT) is part of the propionyl‐CoA catabolic pathway, responsible for the breakdown of branched‐chain amino acids, odd‐chain fatty acids and the side‐chain of cholesterol. Patients with deficient activity of MMUT suffer from isolated methylmalonic aciduria (MMAuria), frequently presenting in the newborn period with failure to thrive and metabolic crisis. Even well managed patients remain at risk for metabolic crises, of which one known trigger is acute illness, which may lead to poor feeding and vomiting, putting the patient in a catabolic state. This situation is believed to result in increased breakdown of propionyl‐CoA catabolic pathway precursors, producing massively elevated levels of disease related metabolites, including methylmalonic acid and propionylcarnitine. Here, we used fasting of a hemizygous mouse model (Mut‐ko/ki) of MMUT deficiency to study the role of induced catabolism on metabolite production. Although mice lost weight and displayed markers consistent with a catabolic state, contrary to expectation, we found strongly reduced levels of methylmalonic acid and propionylcarnitine in fasted conditions. Switching Mut‐ko/ki mice from a high‐protein diet to fasted conditions, or from a standard diet to a no‐protein diet, resulted in similar reductions of methylmalonic acid and propionylcarnitine levels. These results suggest, in our mouse model at least, induction of a catabolic state on its own may not be sufficient to trigger elevated metabolite levels

    Diagnosis of atypical myopathy based on organic acid and acylcarnitine profiles and evolution of biomarkers in surviving horses

    No full text
    Background Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported. Methods AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC–MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test. Results All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days. Conclusion OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals

    LC‐MS / MS method for the differential diagnosis of treatable early onset inherited metabolic epilepsies

    Full text link
    Rapid diagnosis and early specific treatment of metabolic epilepsies due to inborn errors of metabolism (IEMs) is crucial to avoid irreversible sequalae. Nowadays, besides the profile analysis of amino- and organic acids, a range of additional targeted assays is used for the selective screening of those diseases. This strategy can lead to long turn-around times, repeated sampling and diagnostic delays. To replace those individual targeted assays, we developed a new liquid chromatography mass spectrometry method (LC-MS/MS) for the differential diagnosis of inherited metabolic epilepsies that are potentially treatable. The method was developed to simultaneously quantify 12 metabolites (sulfocysteine, guanidinoacetate, creatine, pipecolic acid, Δ1 -piperideine-6-carboxylate (P6C), proline, Δ1 -pyrroline-5-carboxylate (P5C), and the B6 -vitamers) enabling the diagnosis of nine different treatable IEMs presenting primarily with early-onset epilepsy. Plasma and urine samples were mixed with internal standards, precipitated and the supernatants were analyzed by LC-MS/MS. In comparison with previous assays, no derivatization of the metabolites is necessary for analysis. This LC-MS method was validated for quantitative results for all metabolites except P6C and P5C for which semiquantitative results were obtained due to the absence of commercially available standards. Coefficients of variation for all analytes were below 15% and recovery rates range between 80% and 120%. Analysis of patient samples with known IEMs demonstrated the diagnostic value of the method. The presented assay covers a selected panel of biochemical markers, improves the efficiency in the laboratory, and potentially leads to faster diagnoses and earlier treatment avoiding irreversible damage in patients affected with IEMs

    The role of ERNDIM Diagnostic Proficiency Schemes in improving the quality of diagnostic testing for Inherited Metabolic Diseases.

    Get PDF
    External quality assurance (EQA) is crucial to monitor and improve the quality of biochemical genetic testing. ERNDIM (www.erndim.org), established in 1994, aims at reliable and standardised procedures for diagnosis, treatment and monitoring of inherited metabolic disease (IMD) by providing EQA schemes and educational activities. Currently, ERNDIM provides 16 different EQA schemes including quantitative schemes for various metabolite groups, and interpretive schemes such as diagnostic proficiency testing (DPT). DPT schemes focus on the ability of laboratories to correctly identify and interpret abnormalities in authentic urine samples across a wide range of IMDs. In the DPT schemes, six samples each year are distributed together with clinical information. Laboratories choose and perform the tests needed to reach a diagnosis. Data was collected on 345 samples, distributed to up to 105 laboratories worldwide. Diagnostic proficiency (the % of total points possible for all participating laboratories within a scheme for analysis and interpretation) ranged widely: amino acid disorders (n=20), range 33-100%, mean 84%; organic acid disorders (n=35), range 14-100%, mean 84%; lysosomal storage disorders (n=13), range 20-97%, mean 73%; purine/pyrimidine disorders (n=9), range 37-100%, mean 70%; miscellaneous disorders (n=8), range 17-100%, mean 65%; no IMD, range 65-95%, mean 85%. When a sample with the same disorder was distributed in a subsequent survey, performance improved in 75 cases with no improvement seen in 32, suggesting overall improvement of performance. ERNDIM diagnostic proficiency testing is a valuable activity which can help to assess laboratory performance, identify methodological/technical challenges, be informative during quality audits and contribute to a better clinical appreciation of diagnostic uncertainty
    corecore