211 research outputs found

    Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Get PDF
    Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used "three equation" ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated

    Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario

    Get PDF
    How much Antarctic ice shelf basal melt rates can increase in response to global warming remains an open question. Here we describe the response of the Southern Ocean and ice shelf cavities to an abrupt change to high-end atmospheric conditions plausible by the late 23rd century under the SSP5-8.5 scenario. To achieve this objective, we first present and evaluate a new 0.25∘ global configuration of the NEMO (Nucleus for European Modelling of the Ocean NEMO System Team, 2019) ocean and sea ice model. Our present-day simulations demonstrate good agreement with observational data for key variables such as temperature, salinity, and ice shelf melt rates, despite the remaining difficulties to simulate the interannual variability in the Amundsen Sea. The ocean response to the high-end atmospheric perturbation includes a strengthening and extension of the Ross and Weddell gyres and a quasi-disappearance of sea ice, with a subsequent decrease in production of High Salinity Shelf Water and increased intrusion of warmer water onto the continental shelves favoured by changes in baroclinic currents at the shelf break. We propose to classify the perturbed continental shelf as a “warm–fresh shelf”. This induces a substantial increase in ice shelf basal melt rates, particularly in the coldest seas, with a total basal mass loss rising from 1180 to 15 700 Gt yr−1 and an Antarctica averaged melt rate increasing from 0.8 to 10.6 m yr−1. In the perturbed simulation, most ice shelves around Antarctica experience conditions that are currently found in the Amundsen Sea, while the Amundsen Sea warms by 2 ∘C. These idealised projections can be used as a base to calibrate basal melt parameterisations used in long-term ice sheet projections.</p

    On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Get PDF
    Two hindcast (1983–2007) simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing) are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift) to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i) a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii) the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii) the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv) both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1&amp;deg;)

    Final State Interaction in Exclusive (e,eâ€ČNN)(e,e'NN) Reactions

    Get PDF
    Contributions of nucleon-nucleon (NN) correlations, meson exchange currents and the residual final state interactions (FSI) on exclusive two-nucleon knock-out reactions induced by electron scattering are investigated. All contributions are derived from the same realistic meson exchange model for the NN interaction. Effects of correlations and FSI are determined in a consistent way by solving the NN scattering equation, the Bethe-Goldstone equation, for two nucleons in nuclear matter. One finds that the FSI re-scattering terms are non-negligible even if the two nucleons are emitted back to back.Comment: 8 pages, 5 figure

    Student- and school-level belonging and commitment and student smoking, drinking and misbehaviour

    Get PDF
    Objectives: It has been suggested that students are healthier in schools where more students are committed to school. Previous research has examined this only using a proxy measure of value-added education (a measure of whether school-level attendance and attainment are higher than predicted by students’ social profile), finding associations with smoking tobacco, use of alcohol and illicit drugs, and violence. These findings do not provide direct insights into the associations between school-level aggregate student commitment and health behaviours, and may simply reflect the proxy measure being residually confounded by unmeasured student characteristics. We examined the previously used proxy measure of value-added education, as well as direct measures at the level of the school and the student of lack of student commitment to school to see whether these were associated with students’ self-reported smoking tobacco, alcohol use and school misbehaviour. Design: Cross-sectional survey. Setting: A total of 40 schools in south-east England. Methods: Multi-level analyses. Results: There were associations between school- and student-level measures of lack of commitment to school and tobacco smoking, alcohol use and school misbehaviour outcomes, but the proxy measure of school-level commitment, value-added education, was not associated with these outcomes. A sensitivity analysis focused only on violent aspects of school misbehaviour found a pattern of associations identical to that found for the measure of misbehaviour. Conclusion: Our study provides the first direct evidence in support of the Theory of Human Functioning and School Organisation

    Rift Valley fever outbreak, Mauritania, 1998: seroepidemiologic, virologic, entomologic, and zoologic investigations.

    Get PDF
    A Rift Valley fever outbreak occurred in Mauritania in 1998. Seroepidemiologic and virologic investigation showed active circulation of the Rift Valley fever virus, with 13 strains isolated, and 16% (range 1.5%-38%) immunoglobulin (Ig) M-positivity in sera from 90 humans and 343 animals (sheep, goats, camels, cattle, and donkeys). One human case was fatal

    Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing

    Get PDF
    We examine the sensitivity of the Weddell and Ross seas to vertical mixing and surface freshwater forcing using an ocean–sea ice model. The high latitude Southern Ocean is very weakly stratified, with a winter salinity difference across the pycnocline of only ?0.2 PSU. We find that insufficient vertical mixing, freshwater supply from the Antarctic Ice Sheet, or initial sea ice causes a high salinity bias in the mixed layer which erodes the stratification and causes excessive deep convection. This leads to vertical homogenisation of the Weddell and Ross seas, opening of polynyas in the sea ice and unrealistic spin-up of the subpolar gyres and Antarctic Circumpolar Current. The model freshwater budget shows that a ?30% error in any component can destratify the ocean in about a decade. We find that freshwater forcing in the model should be sufficient along the Antarctic coastline to balance a salinity bias caused by dense coastal water that is unable to sink to the deep ocean. We also show that a low initial sea ice area introduces a salinity bias in the marginal ice zone. We demonstrate that vertical mixing, freshwater forcing and initial sea ice conditions need to be constrained simultaneously to reproduce the Southern Ocean hydrography, circulation and sea ice in a model. As an example, insufficient vertical mixing will cause excessive convection in the Weddell and Ross seas even in the presence of large surface freshwater forcing and initial sea ice cover

    Nucleon-Nucleon Correlations and Two-Nucleon Currents in Exclusive (e,eâ€ČNNe,e'NN) Reactions

    Get PDF
    The contributions of short-range nucleon-nucleon (NN) correlations, various meson exchange current (MEC) terms and the influence of Δ\Delta isobar excitations (isobaric currents, IC) on exclusive two-nucleon knockout reactions induced by electron scattering are investigated. The nuclear structure functions are evaluated for nuclear matter. Realistic NN interactions derived in the framework of One-Boson-Exchange model are employed to evaluate the effects of correlations and MEC in a consistent way. The correlations correlations are determined by solving the Bethe-Goldstone equation. This yields significant contributions to the structure functions W_L and W_T of the (e,e'pn) and (e,e'pp) reactions. These contributions compete with MEC corrections originating from the π\pi and ρ\rho exchange terms of the same interaction. Special attention is paid to the so-called 'super parallel' kinematics at momentum transfers which can be measured e.g. at MAMI in Mainz.Comment: 14 pages, 8 figures include

    Nonperturbative renormalization in a scalar model within Light-Front Dynamics

    Get PDF
    Within the covariant formulation of Light-Front Dynamics, in a scalar model with the interaction Hamiltonian H=−gψ2(x)ϕ(x)H=-g\psi^{2}(x)\phi(x), we calculate nonperturbatively the renormalized state vector of a scalar "nucleon" in a truncated Fock space containing the NN, NπN\pi and NππN\pi\pi sectors. The model gives a simple example of non-perturbative renormalization which is carried out numerically. Though the mass renormalization ÎŽm2\delta m^2 diverges logarithmically with the cutoff LL, the Fock components of the "physical" nucleon are stable when L→∞L\to\infty.Comment: 22 pages, 5 figure
    • 

    corecore