53 research outputs found
Energy nonequipartition in a sheared granular mixture
The kinetic granular temperatures of a binary granular mixture in simple
shear flow are determined from the Boltzmann kinetic theory by using a Sonine
polynomial expansion. The results show that the temperature ratio is clearly
different from unity (as may be expected since the system is out of
equilibrium) and strongly depends on the restitution coefficients as well as on
the parameters of the mixture. The approximate analytical calculations are
compared with those obtained from Monte Carlo simulations of the Boltzmann
equation showing an excellent agreement over the range of parameters
investigated. Finally, the influence of the temperature differences on the
rheological properties is also discussed.Comment: 3 figure
Characterization of the Nrt2.6 gene in arabidopsis thaliana: a link with plant response to biotic and abiotic stress
The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.Julie Dechorgnat, Oriane Patrit, Anne Krapp, Mathilde Fagard and Françoise Daniel-Vedel
Transcriptional gene silencing in plants: targets, inducers and regulators
41 ref. www.epress.co.uk/International audienc
Post-transcriptional gene silencing in plants
81 ref. www.cityscape.co.uk/users/ag64/International audienc
Effets des changements environnementaux sur l’immunité végétale
International audienc
The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection
Disease has an effect on crop yields, causing significant losses. As the worldwide demand for agricultural products increases, there is a need to pursue the development of new methods to protect crops from disease. One mechanism of plant protection is through the activation of the plant immune system. By exogenous application, 'plant activator molecules' with elicitor properties can be used to activate the plant immune system. These defence-inducing molecules represent a powerful and often environmentally friendly tool to fight pathogens. We show that the secondary bile acid deoxycholic acid (DCA) induces defence in Arabidopsis and reduces the proliferation of two bacterial phytopathogens: Erwinia amylovora and Pseudomonas syringae pv. tomato. We describe the global defence response triggered by this new plant activator in Arabidopsis at the transcriptional level. Several induced genes were selected for further analysis by quantitative reverse transcription-polymerase chain reaction. We describe the kinetics of their induction and show that abiotic stress, such as moderate drought or nitrogen limitation, does not impede DCA induction of defence. Finally, we investigate the role in the activation of defence by this bile acid of the salicylic acid biosynthesis gene SID2, of the receptor-like kinase family genes WAK1-3 and of the NADPH oxidase-encoding RbohD gene. Altogether, we show that DCA constitutes a promising molecule for plant protection which can induce complementary lines of defence, such as callose deposition, reactive oxygen species accumulation and the jasmonic acid and salicylic acid signalling pathways
- …