14,046 research outputs found

    Structure of the conservation laws in integrable spin chains with short range interactions

    Get PDF
    We present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. With the use of the boost operator, we establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. For two submodels of the XYZ chain - namely the XXX and XY cases, all the charges can be calculated in closed form. For the XXX case, a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. We also indicate that a quantum recursive (ladder) operator can be traced back to the presence of a hamiltonian mastersymmetry of degree one in the classical continuous version of the model. We show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model we demonstrate the non-existence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form.Comment: 79 pages in plain TeX plus 4 uuencoded figures; (uses harvmac and epsf

    On the classical WN(l)W_N^{(l)} algebras

    Full text link
    We analyze the W_N^l algebras according to their conjectured realization as the second Hamiltonian structure of the integrable hierarchy resulting from the interchange of x and t in the l^{th} flow of the sl(N) KdV hierarchy. The W_4^3 algebra is derived explicitly along these lines, thus providing further support for the conjecture. This algebra is found to be equivalent to that obtained by the method of Hamiltonian reduction. Furthermore, its twisted version reproduces the algebra associated to a certain non-principal embedding of sl(2) into sl(4), or equivalently, the u(2) quasi-superconformal algebra. The general aspects of the W_N^l algebras are also presented.Comment: 28 page

    Integrability of the quantum KdV equation at c = -2

    Full text link
    We present a simple a direct proof of the complete integrability of the quantum KdV equation at c=2c=-2, with an explicit description of all the conservation laws.Comment: 9 page
    corecore