6,966 research outputs found

    The pear-shaped fate of an ice melting front

    Get PDF
    A fluid-structure interaction problem with the melting of water around a heated horizontal circular cylinder is analysed with numerical simulations. Dynamic meshing was used for evolving the flow domain in time as the melting front extended radially outward from the cylinder; a node shuffle algorithm was used to retain mesh quality across the significant mesh deformation. We simulated one case above the density inversion point of water and one case below, yielding pear-shaped melting fronts due to thermal plumes either rising or falling from the cylinder, respectively. Results were compared with previous experimental studies and the melting front profiles matched reasonably well and melting rates were in agreement. We confirm that natural convection plays a significant role in the transport of energy as the melt zone increases, and needs to be considered for accurately modelling phase change under these conditions.Comment: Accepted for the 12th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries. SINTEF, Trondheim, Norway. May 30th - June 1st, 201

    The Boltzmann Equation in Classical Yang-Mills Theory

    Get PDF
    We give a detailed derivation of the Boltzmann equation, and in particular its collision integral, in classical field theory. We first carry this out in a scalar theory with both cubic and quartic interactions and subsequently in a Yang-Mills theory. Our method is not relied on a doubling of the fields, rather it is based on a diagrammatic approach representing the classical solution to the problem.Comment: 24 pages, 7 figures; v2: typos corrected, reference added, published in Eur. Phys. J.

    Constituent gluon interpretation of glueballs and gluelumps

    Full text link
    Arguments are given that support the interpretation of the lattice QCD glueball and gluelump spectra in terms of bound states of massless constituent gluons with helicity-1. In this scheme, the mass hierarchy of the currently known gluelumps and glueballs is mainly due to the number of constituent gluons and can be understood within a simple flux tube model. It is also argued that the lattice QCD 0+0^{+-} glueball should be seen as a four-gluon bound state. The flux tube model allows for a parameter-free computation of its mass, which is in good agreement with lattice QCD.Comment: 3 figures, use of package youngta

    Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes

    Full text link
    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Nino phenomenon studied in climate research

    A Connection between Submillimeter Continuum Flux and Separation in Young Binaries

    Full text link
    We have made sensitive 800-micron continuum observations of low-mass, pre-main sequence (PMS) binary stars with projected separations less than 25 AU in Taurus-Auriga to study disks in the young binary environment. We did not detect any of the observed binaries, with typical 3-sigma upper limits of about 30 mJy. Combining our observations with previous 1300-micron observations of PMS Taurus binaries by Beckwith et al. (1990) and others, we find that the submillimeter fluxes from binaries with projected separations between 1 AU and 50 AU are significantly lower than fluxes from binaries with projected separations > 50 AU. The submillimeter fluxes from the wider binaries are consistent with those of PMS single stars. This may indicate lower disk surface densities and masses in the close binaries. Alternatively, dynamical clearing of gaps by close binaries is marginally sufficient to lower their submillimeter fluxes to the observed levels, even without reduction of surface densities elsewhere in the disks.Comment: 12 pages, uuencoded compressed postscript with figures; Wisconsin Astrophysics 526; to appear in ApJ Letter
    corecore