389 research outputs found
UV spectra of iron-doped carbon clusters FeC_n n = 3-6
Electronic transitions of jet-cooled FeC clusters () were
measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon
ionization technique. Rotational profiles were simulated based on previous
calculations of ground state geometries and compared to experimental
observations. Reasonable agreement is found for the planar fan-like structure
of FeC. The FeC data indicate a shorter distance between the Fe atom
and the bent C unit of the fan. The transitions are suggested to be
AB for FeC and AA for FeC. In contrast to the predicted C
geometry, non-linear FeC is apparently observed. Line width broadening
prevents analysis of the FeC spectrum.Comment: 6 pages, 5 figure
Gas phase absorption of C702+ below 10 K: astronomical implications
The electronic spectrum of the fullerene dication C702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10−15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by C702+. At an assumed column density of 2 × 1012 cm−2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of C602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, C60+ and C602+ are similar. The large intrinsic FWHM of the features in this region, ~200 Å for the band near 3250 Å, make them unsuitable for DIB detection
Visible Absorptions of Potential Diffuse ISM Hydrocarbons: C9H9 and C9H5 Radicals
The laboratory detection of previously unobserved resonance-stabilized C9H5 and C9H9 radicals in the supersonic expansion of a hydrocarbon discharge source is reported. The radicals are tentatively assigned as acetylenic-substituted cyclopentadienyl C9H5 and vinyl-substituted benzyl C9H9 species. They are found to feature visible absorption bands that coincide with a few very weak diffuse interstellar bands toward HD183143 and HD204827
Gas Phase Detection of Benzocyclopropenyl
The gas phase detection of benzocyclopropenyl is reported. In this aromatic resonance stabilized radical, a large angular strain is present due to a three-membered ring annelated to a benzene. The resonant two-color two-photon ionization technique is used to record the D1(2A2) ← D0(2B1) electronic transition of this radical after the in situ synthesis in a discharge source. The spectrum features absorptions up to 3300 cm–1 above the origin band at 19 305 cm–1. Benzocyclopropenyl is possibly the major product of the bimolecular reaction of benzene and an atomic carbon at low temperatures
Electronic spectra of linear HCH and cumulene carbene HC
The transition of linear HCH
(A) has been observed in a neon matrix and gas phase. The assignment is based
on mass-selective experiments, extrapolation of previous results of the longer
HCH homologues, and density functional and multi-state CASPT2
theoretical methods. Another band system starting at 303 nm in neon is assigned
as the transition of the cumulene carbene
pentatetraenylidene HC (B).Comment: 7 pages, 4 figures, 5 table
What do Germans really think about health-nudges?
Peer reviewedPublisher PD
Nudges Can Both Raise and Lower Physical Activity Levels : The Effects of Role Models on Stair and Escalator Use – A Pilot Study
We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Funds of Charité – Universitätsmedizin Berlin.Peer reviewedPublisher PD
Augmented Reality-based Feedback for Technician-in-the-loop C-arm Repositioning
Interventional C-arm imaging is crucial to percutaneous orthopedic procedures
as it enables the surgeon to monitor the progress of surgery on the anatomy
level. Minimally invasive interventions require repeated acquisition of X-ray
images from different anatomical views to verify tool placement. Achieving and
reproducing these views often comes at the cost of increased surgical time and
radiation dose to both patient and staff. This work proposes a marker-free
"technician-in-the-loop" Augmented Reality (AR) solution for C-arm
repositioning. The X-ray technician operating the C-arm interventionally is
equipped with a head-mounted display capable of recording desired C-arm poses
in 3D via an integrated infrared sensor. For C-arm repositioning to a
particular target view, the recorded C-arm pose is restored as a virtual object
and visualized in an AR environment, serving as a perceptual reference for the
technician. We conduct experiments in a setting simulating orthopedic trauma
surgery. Our proof-of-principle findings indicate that the proposed system can
decrease the 2.76 X-ray images required per desired view down to zero,
suggesting substantial reductions of radiation dose during C-arm repositioning.
The proposed AR solution is a first step towards facilitating communication
between the surgeon and the surgical staff, improving the quality of surgical
image acquisition, and enabling context-aware guidance for surgery rooms of the
future. The concept of technician-in-the-loop design will become relevant to
various interventions considering the expected advancements of sensing and
wearable computing in the near future
- …