389 research outputs found

    UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    Full text link
    Electronic transitions of jet-cooled FeCn_n clusters (n=36n = 3 - 6) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC3_3. The FeC4_4 data indicate a shorter distance between the Fe atom and the bent C4_4 unit of the fan. The transitions are suggested to be 3^{3}A23_{2} \leftarrow ^{3}B1_{1} for FeC3_3 and 5^{5}A15_{1} \leftarrow ^{5}A1_{1} for FeC4_4. In contrast to the predicted Cv_{\infty \text{v}} geometry, non-linear FeC5_5 is apparently observed. Line width broadening prevents analysis of the FeC6_6 spectrum.Comment: 6 pages, 5 figure

    Gas phase absorption of C702+ below 10 K: astronomical implications

    Get PDF
    The electronic spectrum of the fullerene dication C702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10−15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by C702+. At an assumed column density of 2 × 1012 cm−2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of C602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, C60+ and C602+ are similar. The large intrinsic FWHM of the features in this region, ~200 Å for the band near 3250 Å, make them unsuitable for DIB detection

    Visible Absorptions of Potential Diffuse ISM Hydrocarbons: C9H9 and C9H5 Radicals

    Get PDF
    The laboratory detection of previously unobserved resonance-stabilized C9H5 and C9H9 radicals in the supersonic expansion of a hydrocarbon discharge source is reported. The radicals are tentatively assigned as acetylenic-substituted cyclopentadienyl C9H5 and vinyl-substituted benzyl C9H9 species. They are found to feature visible absorption bands that coincide with a few very weak diffuse interstellar bands toward HD183143 and HD204827

    Gas Phase Detection of Benzocyclopropenyl

    Get PDF
    The gas phase detection of benzocyclopropenyl is reported. In this aromatic resonance stabilized radical, a large angular strain is present due to a three-membered ring annelated to a benzene. The resonant two-color two-photon ionization technique is used to record the D1(2A2) ← D0(2B1) electronic transition of this radical after the in situ synthesis in a discharge source. The spectrum features absorptions up to 3300 cm–1 above the origin band at 19 305 cm–1. Benzocyclopropenyl is possibly the major product of the bimolecular reaction of benzene and an atomic carbon at low temperatures

    Electronic spectra of linear HC5_5H and cumulene carbene H2_2C5_5

    Get PDF
    The 13ΣuX3Σg1 ^3\Sigma_u^- \leftarrow X^3\Sigma_g^- transition of linear HC5_5H (A) has been observed in a neon matrix and gas phase. The assignment is based on mass-selective experiments, extrapolation of previous results of the longer HC2n+1_{2n+1}H homologues, and density functional and multi-state CASPT2 theoretical methods. Another band system starting at 303 nm in neon is assigned as the 11A1X1A11 ^1 A_1 \leftarrow X ^1 A_1 transition of the cumulene carbene pentatetraenylidene H2_2C5_5 (B).Comment: 7 pages, 4 figures, 5 table

    Nudges Can Both Raise and Lower Physical Activity Levels : The Effects of Role Models on Stair and Escalator Use – A Pilot Study

    Get PDF
    We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Funds of Charité – Universitätsmedizin Berlin.Peer reviewedPublisher PD

    Augmented Reality-based Feedback for Technician-in-the-loop C-arm Repositioning

    Full text link
    Interventional C-arm imaging is crucial to percutaneous orthopedic procedures as it enables the surgeon to monitor the progress of surgery on the anatomy level. Minimally invasive interventions require repeated acquisition of X-ray images from different anatomical views to verify tool placement. Achieving and reproducing these views often comes at the cost of increased surgical time and radiation dose to both patient and staff. This work proposes a marker-free "technician-in-the-loop" Augmented Reality (AR) solution for C-arm repositioning. The X-ray technician operating the C-arm interventionally is equipped with a head-mounted display capable of recording desired C-arm poses in 3D via an integrated infrared sensor. For C-arm repositioning to a particular target view, the recorded C-arm pose is restored as a virtual object and visualized in an AR environment, serving as a perceptual reference for the technician. We conduct experiments in a setting simulating orthopedic trauma surgery. Our proof-of-principle findings indicate that the proposed system can decrease the 2.76 X-ray images required per desired view down to zero, suggesting substantial reductions of radiation dose during C-arm repositioning. The proposed AR solution is a first step towards facilitating communication between the surgeon and the surgical staff, improving the quality of surgical image acquisition, and enabling context-aware guidance for surgery rooms of the future. The concept of technician-in-the-loop design will become relevant to various interventions considering the expected advancements of sensing and wearable computing in the near future
    corecore