73 research outputs found

    Fermion pairing in mixed-dimensional atomic mixtures

    Full text link
    We investigate the quantum phases of mixed-dimensional cold atom mixtures. In particular, we consider a mixture of a Fermi gas in a two-dimensional lattice, interacting with a bulk Fermi gas or a Bose-Einstein condensate in a three-dimensional lattice. The effective interaction of the two-dimensional system mediated by the bulk system is determined. We perform a functional renormalization group analysis, and demonstrate that by tuning the properties of the bulk system, a subtle competition of several superconducting orders can be controlled among ss-wave, pp-wave, dx2y2d_{x^2-y^2}-wave, and gxy(x2y2)g_{xy(x^2-y^2)}-wave pairing symmetries. Other instabilities such as a charge-density wave order are also demonstrated to occur. In particular, we find that the critical temperature of the dd-wave pairing induced by the next-nearest-neighbor interactions can be an order of magnitude larger than that of the same pairing induced by doping in the simple Hubbard model. We expect that by combining the nearest-neighbor interaction with the next-nearest-neighbor hopping (known to enhance dd-wave pairing), an even higher critical temperature may be achieved.Comment: 10 pages, 10 figure

    Observing light-induced Floquet band gaps in the longitudinal conductivity of graphene

    Full text link
    We propose optical longitudinal conductivity as a realistic observable to detect light-induced Floquet band gaps in graphene. These gaps manifest as resonant features in the conductivity, when resolved with respect to the probing frequency and the driving field strength. We demonstrate these features via a dissipative master equation approach which gives access to a frequency- and momentum-resolved electron distribution. This distribution follows the light-induced Floquet-Bloch bands, resulting in a natural interpretation as occupations of these bands. Furthermore, we show that there are population inversions of the Floquet-Bloch bands at the band gaps for sufficiently strong driving field strengths. This strongly reduces the conductivity at the corresponding frequencies. Therefore our proposal puts forth not only an unambiguous demonstration of light-induced Floquet-Bloch bands, which advances the field of Floquet engineering in solids, but also points out the control of transport properties via light, that derives from the electron distribution on these bands

    Laser operation based on Floquet-assisted superradiance

    Full text link
    We demonstrate the feasibility of utilizing the recently established Floquet-assisted superradiance for laser operation. In particular, we show the robustness of this state against key imperfections. We consider the effect of a finite linewidth of the driving field, modelled via phase diffusion. We find that the linewidth of the light field in the cavity narrows drastically across the FSP transition, reminiscent of a line narrowing at the laser transition. Next, we demonstrate that the FSP is robust against inhomogeneous broadening, while displaying a reduction of light intensity. We show that the depleted population inversion of near-resonant Floquet states leads to hole burning in the inhomogeneously broadened Floquet spectra. Finally, we show that the FSP is robust against dissipation processes, with coefficients up to values that are experimentally available. We conclude that the FSP presents a robust mechanism that is capable of realistic laser operation
    corecore