6,147 research outputs found

    Stellar Orbits and the Interstellar Gas Temperature in Elliptical Galaxies

    Full text link
    We draw attention to the close relationship between the anisotropy parameter beta(r) for stellar orbits in elliptical galaxies and the temperature profile T(r) of the hot interstellar gas. For nearly spherical galaxies the gas density can be accurately determined from X-ray observations and the stellar luminosity density can be accurately found from the optical surface brightness. The Jeans equation and hydrostatic equilibrium establish a connection between beta(r) and T(r) that must be consistent with the observed stellar velocity dispersion. Purely optical observations of the bright elliptical galaxy NGC 4472 indicate beta(r) < 0.35 within the effective radius. However, the X-ray gas temperature profile T(r) for NGC 4472 requires significantly larger anisotropy, beta = 0.6 - 0.7, about twice the optical value. This strong preference for radial stellar orbits must be understood in terms of the formation history of massive elliptical galaxies. Conversely, if the smaller, optically determined anisotropy is indeed correct, we are led to the important conclusion that the temperature profile T(r) of the hot interstellar gas in NGC 4472 must differ from that indicated by X-ray observations, or that the hot gas is not in hydrostatic equilibrium.Comment: 6 pages (emulateapj5) with 4 figures; accepted by The Astrophysical Journa

    Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries

    Full text link
    We report on numerical results from a revised hydrodynamic simulation of binary neutron-star orbits near merger. We find that the correction recently identified by Flanagan significantly reduces but does not eliminate the neutron-star compression effect. Although results of the revised simulations show that the compression is reduced for a given total orbital angular momentum, the inner most stable circular orbit moves to closer separation distances. At these closer orbits significant compression and even collapse is still possible prior to merger for a sufficiently soft EOS. The reduced compression in the corrected simulation is consistent with other recent studies of rigid irrotational binaries in quasiequilibrium in which the compression effect is observed to be small. Another significant effect of this correction is that the derived binary orbital frequencies are now in closer agreement with post-Newtonian expectations.Comment: Submitted to Phys. Rev.

    Chandra Detection of Massive Black Holes in Galactic Cooling Flows

    Get PDF
    Anticipating forthcoming observations with the Chandra X-ray telescope, we describe the continuation of interstellar cooling flows deep into the cores of elliptical galaxies. Interstellar gas within about r = 50 parsecs from the massive black hole is heated to T > 1 keV and should be visible unless thermal heating is diluted by non-thermal pressure. Since our flows are subsonic near the massive black holes, distributed cooling continues within 300 pc from the center. Dark, low mass stars formed in this region may be responsible for some of the mass attributed to central black holes.Comment: 6 pages with 3 figures; accepted by Astrophysical Journal Letter

    Binary Induced Neutron-Star Compression, Heating, and Collapse

    Get PDF
    We analyze several aspects of the recently noted neutron star collapse instability in close binary systems. We utilize (3+1) dimensional and spherical numerical general relativistic hydrodynamics to study the origin, evolution, and parametric sensitivity of this instability. We derive the modified conditions of hydrostatic equilibrium for the stars in the curved space of quasi-static orbits. We examine the sensitivity of the instability to the neutron star mass and equation of state. We also estimate limits to the possible interior heating and associated neutrino luminosity which could be generated as the stars gradually compress prior to collapse. We show that the radiative loss in neutrinos from this heating could exceed the power radiated in gravity waves for several hours prior to collapse. The possibility that the radiation neutrinos could produce gamma-ray (or other electromagnetic) burst phenomena is also discussed.Comment: 17 pages, 7 figure
    • …
    corecore