44 research outputs found

    Index de la Revue des études arméniennes

    No full text

    Jr. Saint Ephrem the Syrian

    No full text

    Traits reveal ecological strategies driving carrion insect community assembly

    Get PDF
    © 2020 The Royal Entomological Society 1. The succession of carrion-associated (necrophilous) insects on decomposing carrion is well documented. To exploit the changing nutritious and dynamic resources available throughout the carrion decomposition process, different species colonise and consume carrion in a predictable temporal sequence. The traits of these necrophilous insects should reflect their ecological strategies. Morphological traits of these insects, such as body size and wing size, however, have not previously been examined during active and advanced decomposition. 2. We used fourth-corner multivariate generalised linear models to identify insect community morphological trait patterns and to quantify their change through time on decomposing rabbit carcasses in grassland and woodland environments. 3. We found that larger-bodied species of flies and carrion-specialist beetles were associated with the early stages of decomposition. The morphological traits of ants, in contrast, showed no changes at carcasses through time and instead showed body size differences between grassland and woodland environments. 4. Our findings indicate that specialist flies and beetles that arrive early in the decomposition process possess traits that enable rapid discovery of carrion at a large scale. Generalist beetles and ants do not share this same trait and are instead adapted to locate and consume a wider variety of resources in their preferred habitat type at their local scale. 5. Our results provide insights into the morphological adaptations linked to the ecological strategies of distinct components of carrion insect communities. Further, our results offer insights into the community assembly dynamics that structure the communities of necrophilous insect species

    A long-term habitat fragmentation experiment leads to morphological change in a species of carabid beetle

    Get PDF
    1. Habitat fragmentation and transformation are key drivers of species declines in landscapes. Most of the current understanding of species’ responses to environmental change originates from studies of populations and communities. However, phenotypic variation offers another key aspect of species responses and could provide additional insights into the functional drivers of population change. 2. The goal of this study was to address this gap by exploring the morphological changes of a species of carabid beetle (Notonomus resplendens)with a known population response to theWogWog Habitat Fragmentation Experiment in Australia. We measured morphological traits associated with body size, head width, and dispersal ability. We quantified patterns of morphological variation over time and between native Eucalyptus forest fragments and the surrounding pine plantation matrix and the continuous intact native Eucalyptus forest controls. 3. We found sexually dimorphic morphological changes in response to the experimental treatments. Males increased in size, had larger legs and had smaller interocular widths in the matrix in both the short and long terms. Conversely, females became comparatively smaller and had increased interocular widths in the same treatments. Effects in the fragments were similar to those in the matrix, but exhibited more uncertainty. 4. Our results demonstrate that species can show morphological change in response to environmental change over very short time periods. We demonstrate that using both population and morphological data allows stronger inferences about the mechanisms behind species responses to environmental change.Funding to collect samples between 2009 and 2013 was provided by NSF DEB 0841892 to KFD. KFD was also supported by NSF DEB 1350872. MJE was funded by an Australian National University PhD Scholarshi
    corecore