81 research outputs found

    Erythropoietic protoporphyria without skin symptoms-you do not always see what they feel

    Get PDF
    Erythropoietic protoporphyria (EPP) is an inherited disorder of the porphyrin metabolism that often remains undiagnosed in children. We report on a 4-year-old girl who had been suffering for 1 year from recurrent painful crises affecting her hands, feet, and nose following sun exposure. Objective skin lesions were absent until the age of 6. Porphyrin analysis revealed elevated free erythrocyte protoporphyrin (FEP) levels confirming the diagnosis of EPP. This illustrates that skin lesions might be completely absent in children affected with EPP, a fact that has only been reported once previously. Because EPP can manifest with few and unspecific cutaneous symptoms or no skin lesions at all, like in this patient, the diagnosis of EPP might be delayed or missed. EPP should be excluded in all photosensitive children, especially when discomfort is disproportionate to the extent of the cutaneous lesions. The clinic, pathophysiology, diagnosis, complications, and therapy of EPP are discussed

    Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts.</p> <p>Methods</p> <p>To investigate whether cholesterol could regulate uPAR and MMP-9 in breast carcinoma, we used MβCD (methyl beta cyclodextrin, which extracts cholesterol from lipid rafts) to disrupt lipid rafts and studied its effect on breast cancer cell migration, invasion, angiogenesis and signaling.</p> <p>Results</p> <p>Morphological evidence showed the association of uPAR with lipid rafts in breast carcinoma cells. MβCD treatment significantly reduced the colocalization of uPAR and MMP-9 with lipid raft markers and also significantly reduced uPAR and MMP-9 at both the protein and mRNA levels. Spheroid migration and invasion assays showed inhibition of breast carcinoma cell migration and invasion after MβCD treatment. <it>In vitro </it>angiogenesis studies showed a significant decrease in the angiogenic potential of cells pretreated with MβCD. MβCD treatment significantly reduced the levels of MMP-9 and uPAR in raft fractions of MDA-MB-231 and ZR 751 cells. Phosphorylated forms of Src, FAK, Cav, Akt and ERK were significantly inhibited upon MβCD treatment. Increased levels of soluble uPAR were observed upon MβCD treatment. Cholesterol supplementation restored uPAR expression to basal levels in breast carcinoma cell lines. Increased colocalization of uPAR with the lysosomal marker LAMP1 was observed in MβCD-treated cells when compared with untreated cells.</p> <p>Conclusion</p> <p>Taken together, our results suggest that cholesterol levels in lipid rafts are critical for the migration, invasion, and angiogenesis of breast carcinoma cells and could be a critical regulatory factor in these cancer cell processes mediated by uPAR and MMP-9.</p

    A Relationship between Carotenoid Accumulation and the Distribution of Species of the Fungus Neurospora in Spain

    Get PDF
    The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes

    Free Cysteine Modulates the Conformation of Human C/EBP Homologous Protein

    Get PDF
    The C/EBP Homologous Protein (CHOP) is a nuclear protein that is integral to the unfolded protein response culminating from endoplasmic reticulum stress. Previously, CHOP was shown to comprise extensive disordered regions and to self-associate in solution. In the current study, the intrinsically disordered nature of this protein was characterized further by comprehensive in silico analyses. Using circular dichroism, differential scanning calorimetry and nuclear magnetic resonance, we investigated the global conformation and secondary structure of CHOP and demonstrated, for the first time, that conformational changes in this protein can be induced by the free amino acid l-cysteine. Addition of l-cysteine caused a significant dose-dependent decrease in the protein helicity – dropping from 69.1% to 23.8% in the presence of 1 mM of l-cysteine – and a sequential transition to a more disordered state, unlike that caused by thermal denaturation. Furthermore, the presence of small amounts of free amino acid (80 µM, an 8∶1 cysteine∶CHOP ratio) during CHOP thermal denaturation altered the molecular mechanism of its melting process, leading to a complex, multi-step transition. On the other hand, high levels (4 mM) of free l-cysteine seemed to cause a complete loss of rigid cooperatively melting structure. These results suggested a potential regulatory function of l-cysteine which may lead to changes in global conformation of CHOP in response to the cellular redox state and/or endoplasmic reticulum stress

    Brazilian Consensus on Photoprotection

    Full text link
    corecore