6 research outputs found

    Continental concerted efforts to control the seventh outbreak of Ebola Virus Disease in Uganda: the first 90 days of the response

    Get PDF
    On 20th September 2022, Uganda declared the 7th outbreak of Ebola virus disease (EVD) caused by the Sudan Ebola strain following the confirmation of a case admitted at Mubende Regional Referral Hospital. Upon confirmation, the Government of Uganda immediately activated the national incident management system to initiate response activities. Additionally, a multi-country emergency stakeholder meeting was held in Kampala; convening Ministers of Health from neighbouring Member States to undertake cross-border preparedness and response actions. The outbreak spanned 69 days and recorded a total of 164 cases (142 confirmed, 22 probable), 87 recoveries and 77 deaths (case fatality ratio of 47%). Nine out of 136 districts were affected with transmission taking place in 5 districts but spilling over in 4 districts without secondary transmission. As part of the response the Government was able to galvanise robust community mobilisation and initiated assessment of medical counter measures including therapeutics, new diagnostics and vaccines. This paper highlights the response actions put in place that contributed to the containment of this outbreak in addition to the challenges faced with a special focus on key recommendations for better control of future outbreaks

    Epidemiological description of a protracted cholera outbreak in Tonj East and Tonj North counties, former Warrap State, South Sudan, May-Oct 2017

    No full text
    Abstract Background On 18th May 2017, State Ministry of Health of former Warrap State received a report from Tonj East County of an outbreak of acute watery diarrhoea and vomiting in Makuac payam. We conducted this investigation to confirm the causative organism and describe the epidemiology of the outbreak in order to support evidence-based control measures. Methods We defined a suspected case as a resident of Tonj East or Tonj North County with sudden onset of acute watery diarrhoea and vomiting between May 1 and October 15, 2017. A probable case was defined as a suspected case with a positive rapid test for Vibrio cholerae; a confirmed case was a probable case with a positive stool culture for V. cholerae. We conducted systematic case finding by visiting health facilities and villages in the affected payams. We reviewed patient records from 1 May 2017 to 15 October 2017, to identify suspected cholera case-patients. We conducted a descriptive epidemiologic study, examining the distribution of the cases. We computed the attack rates by age, sex, and payam of residence. Case fatality rate was calculated as the ratio of the total number of suspected cholera death to the total number of cholera case-patients. We conducted an oral cholera vaccination campaign after the peak of the outbreak to control and prevent the spread to other payams. Results We identified 1451 suspected cholera cases between May and October 2017. Of these, 81% (21/26) had a positive rapid diagnostic test for V. cholerae; out of the 16 rectal swabs transported to the National Public Laboratory, 88% (14/16) were confirmed to be V. cholerae O1 serotype Inaba. The epidemic curve shows continuous common source outbreak with several peaks. The mean age of the case-patients was 24 years (Range: 0.2-75y). The clinical presentations of the case-patients were consistent with cholera. Males had an attack rate of 9.9/10000. The highest attack rate was in ≥30y (14 per 10,000). Among the six payams affected, Makuac had the highest attack rate of 3/100. The case fatality rate (CFR) was 3.0% (44/1451). Paliang and Wunlit had an oral cholera vaccination coverage of ≥100%, while 4 payams had a vaccination coverage of < 90%. Conclusion This was a continuous common source cholera outbreak caused by V. cholerae 01 sero type Inaba. We recommended strengthening of the surveillance system to improve early detection and effective response

    Successive epidemic waves of cholera in South Sudan between 2014 and 2017: a descriptive epidemiological study

    No full text
    International audienceBackgroundBetween 2014 and 2017, successive cholera epidemics occurred in South Sudan within the context of civil war, population displacement, flooding, and drought. We aim to describe the spatiotemporal and molecular features of the three distinct epidemic waves and explore the role of vaccination campaigns, precipitation, and population movement in shaping cholera spread in this complex setting.MethodsIn this descriptive epidemiological study, we analysed cholera linelist data to describe the spatiotemporal progression of the epidemics. We placed whole-genome sequence data from pandemic Vibrio cholerae collected throughout these epidemics into the global phylogenetic context. Using whole-genome sequence data in combination with other molecular attributes, we characterise the relatedness of strains circulating in each wave and the region. We investigated the association of rainfall and the instantaneous basic reproduction number using distributed lag non-linear models, compared county-level attack rates between those with early and late reactive vaccination campaigns, and explored the consistency of the spatial patterns of displacement and suspected cholera case reports.FindingsThe 2014 (6389 cases) and 2015 (1818 cases) cholera epidemics in South Sudan remained spatially limited whereas the 2016–17 epidemic (20 438 cases) spread among settlements along the Nile river. Initial cases of each epidemic were reported in or around Juba soon after the start of the rainy season, but we found no evidence that rainfall modulated transmission during each epidemic. All isolates analysed had similar genotypic and phenotypic characteristics, closely related to sequences from Uganda and Democratic Republic of the Congo. Large-scale population movements between counties of South Sudan with cholera outbreaks were consistent with the spatial distribution of cases. 21 of 26 vaccination campaigns occurred during or after the county-level epidemic peak. Counties vaccinated on or after the peak incidence week had 2·2 times (95% CI 2·1–2·3) higher attack rates than those where vaccination occurred before the peak.InterpretationPandemic V cholerae of the same clonal origin was isolated throughout the study period despite interepidemic periods of no reported cases. Although the complex emergency in South Sudan probably shaped some of the observed spatial and temporal patterns of cases, the full scope of transmission determinants remains unclear. Timely and well targeted use of vaccines can reduce the burden of cholera; however, rapid vaccine deployment in complex emergencies remains challenging

    Public health emergency operations centres in Africa: a cross-sectional study assessing the implementation status of core components and areas for improvement, December 2021

    No full text
    Objective To assess implementation status of public health emergency operations centres (PHEOCs) in all countries in Africa.Design Cross-sectional.Setting Fifty-four national PHEOC focal points in Africa responded to an online survey between May and November 2021. Included variables aimed to assess capacities for each of the four PHEOC core components. To assess the PHEOCs’ functionality, criteria were defined from among the collected variables by expert consensus based on PHEOC operations’ prioritisation. We report results of the descriptive analysis, including frequencies of proportions.Results A total of 51 (93%) African countries responded to the survey. Among these, 41 (80%) have established a PHEOC. Twelve (29%) of these met 80% or more of the minimum requirements and were classified as fully functional. Twelve (29%) and 17 (41%) PHEOCs that met 60%–79% and below 60% the minimum requirements were classified as functional and partially functional, respectively.Conclusions Countries in Africa made considerable progress in setting up and improving functioning of PHEOCs. One-third of the responding countries with a PHEOC have one fulfilling at least 80% of the minimum requirements to operate the critical emergency functions. There are still several African countries that either do not have a PHEOC or whose PHEOCs only partially meet these minimal requirements. This calls for significant collaboration across all stakeholders to establish functional PHEOCs in Africa

    Gene–Environment Interactions: A Review of Effects on Reproduction and Development

    No full text
    corecore