282 research outputs found

    On the origin of otho-gardenhose heliospheric flux

    Get PDF
    Parker-spiral theory predicts that the heliospheric magnetic field (HMF) will have components of opposite polarity radially toward the Sun and tangentially antiparallel to the solar rotation direction (i.e., in Geocentric Solar Ecliptic (GSE) coordinates, with Bx/By 0 which is frequently observed. We here study the occurrence and structure of OGH flux, as seen in near-Earth space (heliocentric distance r = 1 AU) by the Wind and Advanced Composition Explorer (ACE) spacecraft (for 1995 – 2017, inclusive) and by the Helios-1 and -2 spacecraft at 0.29 AU < r ≀ 1 AU (for December 1974 to August 1981), in order to evaluate the contributions to OGH flux generation of the various mechanisms and factors that are not accounted for by Parker-spiral theory. We study the loss of OGH flux with increasing averaging timescale T between 16 seconds and 100 hours and so determine its spectrum of spatial/temporal scale sizes. OGH flux at Earth at sunspot minimum is shown to be more common than at sunspot maximum and caused by smaller-scale structure in the HMF (with a mode temporal scale at a fixed point of Tmp of about 10hours compared to Tmp of about 40hours for sunspot maximum, corresponding to about 5.5 and 22 degrees (respectively) of heliocentric angular width for co-rotational motion or 21 Rs and 84 Rs for radial solar-wind flow (where Rs is a mean solar radius). OGH generated by rotating the HMF through the radial direction is also shown to differ in its spectrum of scale sizes from that for OGH generated by rotating the HMF through the tangential direction – the former does not contribute to the “excess” open heliospheric flux at a given r but the latter does. We show that roughly half of the HMF deflection from the ideal Parker-spiral needed to give the observed occurrence of OGH at Earth occurs at r below 0.3 AU. By comparing the Helios and near-Earth data we highlight some questions that can be addressed by the Parker Solar Probe mission which will study the HMF down to r = 0.046 AU. We suggest that with decreasing heliocentric distance, Probe will detect decreased OGH field due to draping around transient ejecta, such as blobs and coronal mass ejections, but increasing structure in the radial field within traditional HMF sectors that are remnant AlfvĂ©nic disturbances in outflow regions from coronal reconnection sites

    Tests of sunspot number sequences: 4. Discontinuities around 1946 in various sunspot number and sunspot group number reconstructions

    Get PDF
    We use five test data series to search for, and quantify, putative discontinuities around 1946 in five different annual-mean sunspot-number or sunspot-group number data sequences. The data series tested are: the original and new versions of the Wolf/Zurich/International sunspot number composite [RISNv1 and RISNv2] (respectively Clette et al., Adv. Space Res., 40, 919, 2007 and Clette et al., in “The Solar Activity Cycle”, 35, Springer, 2015); the corrected version of RISNv1 proposed by Lockwood, Owens, and Barnard (J. Geophys. Res. Space Physics, 119, 5193, 2014a) [RC]; the new “backbone” group number composite proposed by Svalgaard and Schatten (Solar Physics, 2016) [RBB]; and the new group-number composite derived by Usoskin et al. (Solar Physics, 2016) [RUEA]. The test data series used are: the group number [NG] and total sunspot area [AG] from the Royal Observatory, Greenwich / Royal Greenwich Observatory (RGO) photoheliographic data; the Ca K index from the recent re-analysis of Mount Wilson Observatory (MWO) spectroheliograms in the Calcium II K ion line; the sunspot-group number from the MWO sunspot drawings [NMWO]; and the dayside ionospheric F2-region critical frequencies measured by the Slough ionosonde [foF2]. These test data all vary in close association with sunspot numbers, in some cases non-linearly. The tests are carried out using both the “before-and-after” fit-residual comparison method and the correlation method of Lockwood, Owens, and Barnard, applied to annual mean data for intervals iterated to minimise errors and to eliminate uncertainties associated with the precise date of the putative discontinuity. It is not assumed that the correction required is by a constant factor, nor even linear in sunspot number. It is shown that a non-linear correction is required by RC, RBB, and RISNv1, but not by RISNv2 or RUEA. The five test datasets give very similar results in all cases. By multiplying the probability distribution functions together we obtain the optimum correction for each sunspot dataset that must be applied to pre-discontinuity data to make them consistent with the post-discontinuity data. It is shown that, on average, values for 1932 - 1943 are too small (relative to later values) by about 12.3 % for RISNv1 but are too large for RISNv2 and RBB by 3.8 % and 5.2 %, respectively. The correction that was applied to generate RC from RISNv1 reduces this average factor to 0.5 % but does not remove the non-linear variation with the test data, and other errors remain uncorrected. A valuable test of the procedures used is provided by RUEA, which is identical to the RGO NG values over the interval employed
    • 

    corecore