35 research outputs found

    Anomalous flows in a sunspot penumbra

    Full text link
    High-resolution spectropolarimetric observations of active region NOAA 11271 were obtained with the spectro-polarimeter on board Hinode to analyze the properties of an anomalous flow in the photosphere in a sunspot penumbra. We detect a blue-shifted feature that appeared on the limb-side penumbra of a sunspot and that was present intermittently during the next two hours. It exhibited a maximum blue-shift of 1.6 km/s, an area of 5.2 arcsec^2, and an uninterrupted lifetime of 1 hr. The blue-shifted feature, when present, lies parallel to red-shifts. Both blue and red shifts flank a highly inclined/horizontal magnetic structure that is radially oriented in the penumbra. The low-cadence SP maps reveal changes in size, radial position in the penumbra and line-of-sight velocity of the blue-shifted feature, from one scan to the other. There was an increase of nearly 500 G in the field strength and a marginal reduction in the field inclination of about 10 deg with the onset of the blue-shifts. In the chromosphere, intense, arc-shaped brightenings were observed close to the location of the blue-shifts, that extend from the edge of the umbral core to the penumbra-quiet Sun boundary. The strongest and largest brightenings were observed about 30 min after the strongest blue-shifts were detected at the photosphere. The close spatial proximity of the two phenomenon strongly suggests a causal relationship. The blue-shifted feature represents plasma motion that could be related to a magnetic structure that rises in the solar atmosphere and subsequently reconnects with the ambient chromospheric magnetic field of the sunspot or an inverse Evershed flow, which would be unique in the photosphere. This transient phenomena is presumably related to the dynamic stability of the sunspot because the corresponding umbral core separated two days later at the location of the blue-shifts and fragmented subsequently.Comment: Accepted for publication in A&A: 8 pages, 8 figure

    Formation of a penumbra in a decaying sunspot

    Full text link
    Context : Penumbrae are an important characteristic of sunspots, whose formation is intricately related to the nature of sub-photospheric magnetic fields. Aims : We study the formation of a penumbra in a decaying sunspot and compare its properties with those seen during the development of a proto-spot. Methods : High-resolution spectropolarimetric observations of active region NOAA 11283 were obtained from the spectro-polarimeter on board Hinode. These were complemented with full-disk filtergrams of continuum intensity, line-of-sight magnetograms, and dopplergrams from the Helioseismic and Magnetic Imager at high cadence. Results : The formation of a penumbra in the decaying sunspot occurs after the coalescence of the sunspot with a magnetic fragment/pore, which initially formed in the quiet Sun close to an emerging flux region. At first, a smaller set of penumbral filaments develop near the location of the merger with very bright penumbral grains with intensities of 1.2 I_QS, upflows of 4 km/s, and a lifetime of 10 hr. During the decay of these filaments, a larger segment of a penumbra forms at the location of the coalescence. These new filaments are characterized by nearly supersonic downflows of 6.5 km/s that change to a regular Evershed flow nearly 3 hr later. Conclusions : The coalescence of the pore with the decaying sunspot provided sufficient magnetic flux for the penumbra to form in the sunspot. The emerging flux region could have played a decisive role in this process because the formation occurred at the location of the merger and not on the opposite side of the sunspot.Comment: Accepted for publication in A&A Letters, 6 pages, 4 figure

    Properties of Umbral Dots from Stray Light Corrected Hinode Filtergrams

    Full text link
    High resolution blue continuum filtergrams from Hinode are employed to study the umbral fine structure of a regular unipolar sunspot. The removal of scattered light from the images increases the rms contrast by a factor of 1.45 on average. Improvement in image contrast renders identification of short filamentary structures resembling penumbrae that are well separated from the umbra-penumbra boundary and comprise bright filaments/grains flanking dark filaments. Such fine structures were recently detected from ground based telescopes and have now been observed with Hinode. A multi-level tracking algorithm was used to identify umbral dots in both the uncorrected and corrected images and to track them in time. The distribution of the values describing the photometric and geometric properties of umbral dots are more easily affected by the presence of stray light while it is less severe in the case of kinematic properties. Statistically, umbral dots exhibit a peak intensity, effective diameter, lifetime, horizontal speed and a trajectory length of 0.29 I_QS, 272 km, 8.4 min, 0.45 km/s and 221 km respectively. The 2 hr 20 min time sequence depicts several locations where umbral dots tend to appear and disappear repeatedly with various time intervals. The correction for scattered light in the Hinode filtergrams facilitates photometry of umbral fine structure which can be related to results obtained from larger telescopes and numerical simulations.Comment: Accepted for publication in ApJ : 10 pages, 10 figures, 3 table

    A study of the propagation of magnetoacoustic waves in small-scale magnetic fields using solar photospheric and chromospheric Dopplergrams: HMI/SDO and MAST observations

    Full text link
    In this work, we present a study of the propagation of low-frequency magneto-acoustic waves into the solar chromosphere within small-scale inclined magnetic fields over a quiet-magnetic network region utilizing near-simultaneous photospheric and chromospheric Dopplergrams obtained from the HMI instrument onboard SDO spacecraft and the Multi-Application Solar Telescope (MAST) operational at the Udaipur Solar Observatory, respectively. Acoustic waves are stochastically excited inside the convection zone of the Sun and intermittently interact with the background magnetic fields resulting into episodic signals. In order to detect these episodic signals, we apply the wavelet transform technique to the photospheric and chromospheric velocity oscillations in magnetic network regions. The wavelet power spectrum over photospheric and chromospheric velocity signals show a one-to-one correspondence between the presence of power in the 2.5-4 mHz band. Further, we notice that power in the 2.5-4 mHz band is not consistently present in the chromospheric wavelet power spectrum despite its presence in the photospheric wavelet power spectrum. This indicates that leakage of photospheric oscillations (2.5-4 mHz band) into the higher atmosphere is not a continuous process. The average phase and coherence spectra estimated from these photospheric and chromospheric velocity oscillations illustrate the propagation of photospheric oscillations (2.5-4 mHz) into the solar chromosphere along the inclined magnetic fields. Additionally, chromospheric power maps estimated from the MAST Dopplergrams also show the presence of high-frequency acoustic halos around relatively high magnetic concentrations, depicting the refraction of high-frequency fast mode waves around vA ~ vs layer in the solar atmosphere.Comment: 16 pages, 7 figures, Accepted for Publication in Journal of Atmospheric and Solar-Terrestrial Physics (Special Issue of STP-15
    corecore